The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284814 Least number k such that k mod (2, 3, 4, ... , n+1) = (d_1, d_2, ..., d_n), where d_1 , d_2, …, d_n are the digits of n, with MSD(n) = d_1 and LSD(n) = d_n. 0 if such a number does not exist. 0

%I

%S 1,0,0,0,11311,0,1032327,11121217,101033565,0,10333633323,0,0,

%T 11121314781937,0

%N Least number k such that k mod (2, 3, 4, ... , n+1) = (d_1, d_2, ..., d_n), where d_1 , d_2, …, d_n are the digits of n, with MSD(n) = d_1 and LSD(n) = d_n. 0 if such a number does not exist.

%C Suggested by Francis Maleval in Linkedin "Number Theory" group.

%e a(11) = 10333633323 because:

%e 10333633323 mod 2 = 1, 10333633323 mod 3 = 0, 10333633323 mod 4 = 3,

%e 10333633323 mod 5 = 3, 10333633323 mod 6 = 3, 10333633323 mod 7 = 6,

%e 10333633323 mod 8 = 3, 10333633323 mod 9 = 3, 10333633323 mod 10 = 3,

%e 10333633323 mod 11 = 2, 10333633323 mod 12 = 3.

%p P:=proc(q) local a,d,j,k,n,ok; for k from 1 to q do d:=0; for n from 10^(k-1) to 10^k-1 do

%p ok:=1; a:=n; for j from 1 to ilog10(n)+1 do if (a mod 10)<>n mod ((ilog10(n)+2-j)+1)

%p then ok:=0; break; else a:=trunc(a/10); fi; od; if ok=1 then print(n); d:=1; break; fi; od;

%p if n=10^k and d=0 then print(0); fi; od; end: P(20);

%Y Cf. A284815.

%K nonn,base,hard,more

%O 1,5

%A _Paolo P. Lava_, Apr 10 2017

%E a(12)-a(15) from _Giovanni Resta_, Apr 10 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 07:36 EDT 2021. Contains 343692 sequences. (Running on oeis4.)