%I #25 Dec 19 2022 09:43:02
%S 0,0,0,0,0,4,2,2,5,10,4,2,9,6,2,4,18,21,8,44,26,67,54,83,96,142,152,
%T 172,248,244,312,389,512,584,683,724,945,1106,1266,1512,1798,1974,
%U 2435,2852,3295,3981,4349,5441,6283,6983,8249,9786,10979,13135,14938
%N The number of partitions of n which represent Chomp positions with Sprague-Grundy value 5.
%C Chomp positions with Sprague-Grundy value 0 are the losing positions. Their number is given in A112470.
%D P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
%H Thomas J Wolf, <a href="/A284692/b284692.txt">Table of n, a(n) for n = 1..69</a>
%H Thomas S. Ferguson, <a href="https://www.mina.moe/wp-content/uploads/2018/05/GAME-THEORY-Thomas-S.Ferguson.pdf">Game Theory</a> (lecture notes + exercise questions for a course on Combinatorial Game Theory).
%H P. M. Grundy, <a href="/A002188/a002188.pdf">Mathematics and games</a>, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - _N. J. A. Sloane_, Nov 17 2018]
%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/41/0/41_0_438/_article">Über mathematische Kampfspiele</a>, Tohoku Math. J. 41 (1936), 438-444.
%H R. Sprague, <a href="https://www.jstage.jst.go.jp/article/tmj1911/43/0/43_0_351/_article">Über zwei Abarten von Nim</a>, Tohoku Math. J. 43 (1937), 351-354.
%Y Cf. A112471, A112472, A112473.
%K nonn
%O 1,6
%A _Thomas J Wolf_, Apr 01 2017