The conjecture in A284597 follows from Dickson's conjecture

Robert Israel

March 30, 2020

Theorem 1 Assume Dickson's conjecture. For every positive integer n there are infinitely many runs of exactly n consecutive natural numbers with nondecreasing tau values, where τ is the number of divisors function $A 000005$.

Proof The proof is by induction.
For the case $n=1$, we want to find arbitrarily large x such that $\tau(x-1)>\tau(x)>$ $\tau(x+1)$. Start with y such that $\tau(y)>\tau(y+1)$ (e.g. this will be the case if $y+1$ is prime and y is composite). If y is not an example, $\tau(y-1) \leq \tau(y)$. Consider $x=y+k y(y+1)$ for integer $k>1$. If $1+k y$ is prime, we have $x+1=(y+1)(1+k y) ; y+1$ and $1+k y$ are coprime, so $\tau(x+1)=\tau(y+1) \tau(1+k y)=2 \tau(y+1)$. Similarly if $1+k(y+1)$ is prime, we have $x=y(1+k(y+1))$ so $\tau(x)=2 \tau(y)$. On the other hand, let q be a prime that doesn't divide $y(y+1)$ and N large enough that $N>2 \tau(y)$. There is v such that $y-1+v y(y+1) \equiv 0 \bmod q^{N}$. Thus if $k \equiv v \bmod q^{N}, q^{N} \mid x-1$ and $\tau(x-1) \geq N+1>\tau(x)>\tau(x+1)$. There is no congruence condition preventing $1+k y$ and $1+k(y+1)$ being prime with $k \equiv v \bmod q^{N}$, since for any finite set of primes $p_{j} \neq q$, there are k with $k \equiv v \bmod q^{N}$ and $k \equiv 0 \bmod p_{i}$, so that $1+k y \equiv 1 \bmod p_{j}$ and $1+k(y+1) \equiv 1 \bmod p_{j}$, while $x-1 \equiv 0 \bmod q^{N}$ implies $1+k(y+1)=x y^{-1}$ and $1+k y=x(y+1)^{-1}$ are nonzero mod q. Thus Dickson's conjecture implies there are infinitely many k for which this is true.

Now for the induction step. Suppose y is the start of a run of exactly n consecutive natural numbers with nondecreasing τ values, i.e.

$$
\tau(y-1)>\tau(y) \leq \tau(y+1) \leq \ldots \leq \tau(y+n-1)>\tau(y+n)
$$

Let $L=\operatorname{lcm}(y-1, y, \ldots, y+n-1, y+n+1)$, and consider $x=y+k L$ for $k>1$. If $1+k L /(y+i)$ is prime (where $i \in\{-1,0, \ldots, n-1, n+1\})$, then $x+i=(y+i)(1+k L /(y+i))$ with $y+i$ and $1+k L /(y+i)$ coprime so $\tau(x+i)=2 \tau(y+i)$. On the other hand, let $q>n$ be a prime that doesn't divide $(y-1) y \ldots(y+n-1)(y+n+1)$), and N large enough that $N+1>\max (2 \tau(y+n-1), 2 \tau(y+n+1))$. There is v such that $y+n+v L \equiv 0 \bmod q^{N}$. If $k \equiv v \bmod q^{N}, q^{N} \mid x+n$ and $\tau(x+n) \geq N+1$. Thus if $k \equiv v \bmod q^{N}$ and $1+k L /(y+i)$ is prime for all $i \in\{-1,1, \ldots, n-1, n+1\}$, then

$$
\tau(x-1)>\tau(x) \leq \tau(x+1) \leq \ldots \tau(x+n-1)<\tau(x+n)>\tau(x+n+1)
$$

so x is the start of a run of exactly $n+1$ consecutive natural numbers with nondecreasing τ values. There is no congruence condition preventing this, since for any set of primes $p_{j} \neq q$, there are k with $k \equiv v \bmod q^{N}$ and $k \equiv 0 \bmod p_{j}$, so $1+k L /(y+i) \equiv 1 \bmod p_{j}$ for $i \in\{-1,0, \ldots, n-1, n+1\}$, while $1+k L /(y+i)=(x+i)(y+i)^{-1}$ are nonzero mod q. Thus Dickson's conjecture implies there are infinitely many k for which this is true.

This completes the proof.

