The conjecture in A284597 follows from Dickson's conjecture

Robert Israel

March 30, 2020

Theorem 1 Assume Dickson's conjecture. For every positive integer n there are infinitely many runs of exactly n consecutive natural numbers with nondecreasing tau values, where τ is the number of divisors function A000005.

Proof The proof is by induction.

For the case n = 1, we want to find arbitrarily large x such that $\tau(x - 1) > \tau(x) > \tau(x + 1)$. Start with y such that $\tau(y) > \tau(y + 1)$ (e.g. this will be the case if y + 1 is prime and y is composite). If y is not an example, $\tau(y - 1) \leq \tau(y)$. Consider x = y + ky(y + 1)for integer k > 1. If 1 + ky is prime, we have x + 1 = (y + 1)(1 + ky); y + 1 and 1 + kyare coprime, so $\tau(x + 1) = \tau(y + 1)\tau(1 + ky) = 2\tau(y + 1)$. Similarly if 1 + k(y + 1)is prime, we have x = y(1 + k(y + 1)) so $\tau(x) = 2\tau(y)$. On the other hand, let q be a prime that doesn't divide y(y + 1) and N large enough that $N > 2\tau(y)$. There is vsuch that $y - 1 + vy(y + 1) \equiv 0 \mod q^N$. Thus if $k \equiv v \mod q^N$, $q^N \mid x - 1$ and $\tau(x - 1) \geq N + 1 > \tau(x) > \tau(x + 1)$. There is no congruence condition preventing 1 + kyand 1 + k(y + 1) being prime with $k \equiv v \mod q^N$, since for any finite set of primes $p_j \neq q$, there are k with $k \equiv v \mod q^N$ and $k \equiv 0 \mod p_i$, so that $1 + ky \equiv 1 \mod p_j$ and $1 + k(y + 1) \equiv 1 \mod p_j$, while $x - 1 \equiv 0 \mod q^N$ implies $1 + k(y + 1) = xy^{-1}$ and $1 + ky = x(y + 1)^{-1}$ are nonzero mod q. Thus Dickson's conjecture implies there are infinitely many k for which this is true.

Now for the induction step. Suppose y is the start of a run of exactly n consecutive natural numbers with nondecreasing τ values, i.e.

$$\tau(y-1) > \tau(y) \le \tau(y+1) \le \ldots \le \tau(y+n-1) > \tau(y+n)$$

Let $L = \operatorname{lcm}(y - 1, y, \dots, y + n - 1, y + n + 1)$, and consider x = y + kL for k > 1. If 1+kL/(y+i) is prime (where $i \in \{-1, 0, \dots, n-1, n+1\}$), then x+i = (y+i)(1+kL/(y+i)) with y+i and 1+kL/(y+i) coprime so $\tau(x+i) = 2\tau(y+i)$. On the other hand, let q > n be a prime that doesn't divide $(y-1)y \dots (y+n-1)(y+n+1)$), and N large enough that $N+1 > \max(2\tau(y+n-1), 2\tau(y+n+1))$. There is v such that $y+n+vL \equiv 0 \mod q^N$. If $k \equiv v \mod q^N$, $q^N \mid x+n$ and $\tau(x+n) \ge N+1$. Thus if $k \equiv v \mod q^N$ and 1+kL/(y+i) is prime for all $i \in \{-1, 1, \dots, n-1, n+1\}$, then

$$\tau(x-1) > \tau(x) \le \tau(x+1) \le \dots \tau(x+n-1) < \tau(x+n) > \tau(x+n+1)$$

so x is the start of a run of exactly n + 1 consecutive natural numbers with nondecreasing τ values. There is no congruence condition preventing this, since for any set of primes $p_j \neq q$, there are k with $k \equiv v \mod q^N$ and $k \equiv 0 \mod p_j$, so $1 + kL/(y+i) \equiv 1 \mod p_j$ for $i \in \{-1, 0, \ldots, n-1, n+1\}$, while $1 + kL/(y+i) = (x+i)(y+i)^{-1}$ are nonzero mod q. Thus Dickson's conjecture implies there are infinitely many k for which this is true.

This completes the proof.