login
The smallest square referenced in A038109 (Divisible exactly by the square of a prime).
3

%I #18 Nov 14 2020 05:24:56

%S 4,9,4,9,4,25,4,4,4,9,49,25,4,4,9,4,9,25,4,4,9,4,49,9,4,4,4,9,121,4,9,

%T 4,4,9,49,4,25,9,4,4,169,9,4,25,4,4,4,9,25,4,9,4,4,9,4,9,4,121,4,49,4,

%U 4,9,4,25,4,9,4,9,289,4,49,4,9,4,9,4,4,25,4

%N The smallest square referenced in A038109 (Divisible exactly by the square of a prime).

%C a(n) = p^2 where p is the least prime whose exponent in the prime factorization of A038109(n) is exactly 2. - _Robert Israel_, Mar 28 2017

%H Robert Israel, <a href="/A284018/b284018.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A284017(n)^2. - _Amiram Eldar_, Nov 14 2020

%e A038109(3)=12, 12 = 2*2*3, so 12 is divisible by the square of 2 which is 4.

%p N:= 1000: # to use the members of A038109 <= N

%p P:= select(isprime, [$1..floor(sqrt(N))]):

%p S:= {}:

%p for p in P do

%p Ks:= select(t -> t mod p <> 0, {$1..floor(N/p^2)});

%p R:= map(`*`, Ks, p^2) minus S;

%p for r in R do B[r]:= p^2 od:

%p S:= S union R;

%p od:

%p A038109:= sort(convert(S, list)): seq(B[A038109[i]], i=1..nops(A038109));# _Robert Israel_, Mar 28 2017

%t s[n_] := If[(pos = Position[(f = FactorInteger[n])[[;; , 2]], 2]) == {}, 1, f[[pos[[1, 1]], 1]]]; Select[Array[s, 300], # > 1 &]^2 (* _Amiram Eldar_, Nov 14 2020 *)

%Y Cf. A038109, A284017, A013929, A283919.

%K nonn

%O 1,1

%A _Robert Price_, Mar 18 2017

%E Corrected by _Robert Israel_, Mar 28 2017