%I
%S 0,0,900,16648,264482,4242700,64614384,948567440,13692510028,
%T 194684984664,2732350150328,37970482883588,523376223847790,
%U 7164059469775432,97485442889266544,1319817637818838080
%N Number of 4Xn 0..1 arrays with no 1 equal to more than three of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
%C Row 4 of A283950.
%H R. H. Hardin, <a href="/A283953/b283953.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 16*a(n-1) -8*a(n-2) +284*a(n-3) -5868*a(n-4) -28230*a(n-5) -157554*a(n-6) -173236*a(n-7) +1146756*a(n-8) +7892098*a(n-9) +25593935*a(n-10) +36554864*a(n-11) -55986547*a(n-12) -432158954*a(n-13) -1204632264*a(n-14) -1998691250*a(n-15) -1605250954*a(n-16) +294441830*a(n-17) +809141749*a(n-18) -1344109538*a(n-19) -103523380*a(n-20) +5289951936*a(n-21) +2914513239*a(n-22) -5852825596*a(n-23) -3883862757*a(n-24) +6008029086*a(n-25) +3960433969*a(n-26) -6028634000*a(n-27) -2764777189*a(n-28) +6310228182*a(n-29) +2948307946*a(n-30) -4841207198*a(n-31) -3654980824*a(n-32) +1938808856*a(n-33) +2350470949*a(n-34) -14404886*a(n-35) -836811271*a(n-36) -578351728*a(n-37) +95766913*a(n-38) +329294420*a(n-39) +51047632*a(n-40) -103322336*a(n-41) +3540417*a(n-42) +53070582*a(n-43) +4003494*a(n-44) -9177612*a(n-45) -7358386*a(n-46) -3173056*a(n-47) +1093461*a(n-48) +565312*a(n-49) -841952*a(n-50) -282366*a(n-51) +325420*a(n-52) +31324*a(n-53) -41337*a(n-54) +5404*a(n-55) -196*a(n-56)
%e Some solutions for n=4
%e ..0..0..0..1. .1..0..0..0. .0..0..1..1. .1..0..1..0. .1..1..0..0
%e ..1..1..1..1. .1..0..1..0. .1..1..1..1. .1..0..0..0. .0..0..0..0
%e ..0..1..0..1. .1..1..1..0. .0..0..0..1. .1..0..1..1. .1..0..1..0
%e ..1..1..0..0. .0..1..0..1. .0..0..1..1. .1..1..1..0. .1..1..1..1
%Y Cf. A283950.
%K nonn
%O 1,3
%A _R. H. Hardin_, Mar 18 2017
|