%I
%S 0,84,7988,264482,8244557,242330064,6816984648,186634970946,
%T 5006741437429,132235076658212,3449881843194282,89112251221774946,
%U 2282954398345404380,58083724718538740624,1469105340510703161357
%N Number of nX5 0..1 arrays with no 1 equal to more than three of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
%C Column 5 of A283950.
%H R. H. Hardin, <a href="/A283947/b283947.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A283947/a283947.txt">Empirical recurrence of order 90</a>
%F Empirical recurrence of order 90 (see link above)
%e Some solutions for n=3
%e ..0..0..1..0..1. .0..1..1..0..1. .0..1..0..0..1. .1..1..0..0..0
%e ..1..1..0..0..0. .1..1..1..0..1. .0..1..0..1..1. .1..1..0..1..0
%e ..1..0..1..1..1. .1..0..0..1..0. .0..1..1..1..0. .0..1..1..1..1
%Y Cf. A283950.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 18 2017
|