%I #4 Mar 15 2017 08:00:16
%S 0,242,7839,185564,4096541,85216204,1712274593,33562500568,
%T 645693322870,12245204883594,229579628653688,4264277726781824,
%U 78593573780867383,1439071472782162236,26202481076773862619,474782901940298647924
%N Number of nX5 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
%C Column 5 of A283726.
%H R. H. Hardin, <a href="/A283723/b283723.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A283723/a283723.txt">Empirical recurrence of order 80</a>
%F Empirical recurrence of order 80 (see link above)
%e Some solutions for n=4
%e ..0..0..0..0..0. .0..0..0..1..0. .0..1..1..0..1. .0..0..0..1..1
%e ..1..1..0..0..1. .1..0..0..0..0. .0..0..0..1..1. .0..0..0..0..0
%e ..1..1..0..0..0. .0..1..1..1..0. .0..1..0..0..0. .0..0..0..1..1
%e ..1..0..0..1..1. .0..1..0..1..1. .1..1..0..0..0. .1..1..1..0..1
%Y Cf. A283726.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 15 2017