login
Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.
1

%I #4 Mar 15 2017 07:59:04

%S 0,60,1088,15228,196548,2391696,28103560,322050940,3622197748,

%T 40156778920,440103529194,4778398401120,51478875779886,

%U 550962104490308,5863716020439970,62102879848049336,654945091390069876

%N Number of nX4 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly one element.

%C Column 4 of A283726.

%H R. H. Hardin, <a href="/A283722/b283722.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 14*a(n-1) -a(n-2) -226*a(n-3) -1460*a(n-4) -2232*a(n-5) +1525*a(n-6) +22350*a(n-7) +39289*a(n-8) +13206*a(n-9) -146613*a(n-10) -259034*a(n-11) -136682*a(n-12) +488660*a(n-13) +810954*a(n-14) +302750*a(n-15) -834146*a(n-16) -986264*a(n-17) -173928*a(n-18) +495516*a(n-19) +329204*a(n-20) +4440*a(n-21) -35121*a(n-22) -16332*a(n-23) -13884*a(n-24) -5504*a(n-25) -1072*a(n-26) -320*a(n-27) -64*a(n-28)

%e Some solutions for n=4

%e ..1..1..0..0. .0..0..1..1. .0..0..0..1. .1..0..1..1. .0..0..1..1

%e ..0..0..1..1. .1..1..0..1. .0..0..1..1. .1..0..1..0. .1..0..1..0

%e ..0..0..0..1. .0..1..0..0. .0..0..0..1. .0..1..0..0. .0..1..1..0

%e ..1..0..0..0. .0..0..1..0. .0..0..1..1. .1..0..0..1. .1..0..1..1

%Y Cf. A283726.

%K nonn

%O 1,2

%A _R. H. Hardin_, Mar 15 2017