%I
%S 0,606,28828,856710,20051838,490925804,10666178322,218881780434,
%T 4439994180178,86144471693502,1647236588215940,30886611480481804,
%U 570240744935345282,10403840277141487378,187674700355041651540
%N Number of 6Xn 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.
%C Row 6 of A283634.
%H R. H. Hardin, <a href="/A283639/b283639.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A283639/a283639.txt">Empirical recurrence of order 96</a>
%F Empirical recurrence of order 96 (see link above)
%e Some solutions for n=3
%e ..1..0..0. .1..1..0. .0..1..1. .1..1..1. .0..1..1. .1..1..0. .0..1..0
%e ..0..0..0. .1..0..0. .1..0..1. .0..0..1. .0..0..0. .0..1..0. .1..0..1
%e ..0..1..1. .1..0..0. .0..0..0. .0..0..0. .1..1..0. .1..0..1. .1..0..1
%e ..0..1..0. .1..1..0. .0..0..0. .1..0..0. .1..0..0. .0..0..0. .1..0..1
%e ..0..0..1. .1..0..1. .1..1..1. .1..0..0. .0..1..0. .1..1..0. .0..0..0
%e ..1..0..1. .0..0..1. .0..0..1. .1..1..0. .0..0..0. .0..0..0. .1..1..1
%Y Cf. A283634.
%K nonn
%O 1,2
%A _R. H. Hardin_, Mar 12 2017
