%I #7 Feb 21 2019 09:13:50
%S 16,98,573,4089,25532,167920,1094959,7101809,46326550,301306398,
%T 1961384325,12768156061,83100368446,540929424728,3520893704293,
%U 22917627167529,149172500835242,970968632009710,6320086805449019
%N Number of 4 X n 0..1 arrays with no 1 equal to more than one of its horizontal, diagonal and antidiagonal neighbors.
%H R. H. Hardin, <a href="/A283545/b283545.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n1) + 19*a(n2) + 62*a(n3) + 24*a(n4) + 82*a(n5)  75*a(n6) + 50*a(n7)  145*a(n8).
%F Empirical g.f.: x*(16 + 66*x + 73*x^2 + 89*x^3 + 7*x^4  25*x^5  95*x^6  145*x^7) / (1  2*x  19*x^2  62*x^3  24*x^4  82*x^5 + 75*x^6  50*x^7 + 145*x^8).  _Colin Barker_, Feb 21 2019
%e Some solutions for n=4:
%e ..1..0..0..0. .1..0..0..1. .0..0..0..1. .0..0..0..1. .1..0..0..0
%e ..0..0..0..0. .1..0..0..0. .0..1..0..1. .1..0..1..0. .0..0..0..1
%e ..1..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..1
%e ..1..0..1..0. .0..0..1..1. .1..0..0..0. .0..0..0..0. .1..0..0..0
%Y Row 4 of A283543.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 10 2017
