%I
%S 0,0,0,0,1,0,0,3,3,0,0,19,60,19,0,0,91,532,532,91,0,0,399,4420,8087,
%T 4420,399,0,0,1734,34531,116624,116624,34531,1734,0,0,7257,257416,
%U 1592250,2993934,1592250,257416,7257,0,0,29754,1862717,20788531,71707838
%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements.
%C Table starts
%C .0.....0........0..........0............0...............0.................0
%C .0.....1........3.........19...........91.............399..............1734
%C .0.....3.......60........532.........4420...........34531............257416
%C .0....19......532.......8087.......116624.........1592250..........20788531
%C .0....91.....4420.....116624......2993934........71707838........1644385909
%C .0...399....34531....1592250.....71707838......3007934404......120672330232
%C .0..1734...257416...20788531...1644385909....120672330232.....8473366210380
%C .0..7257..1862717..264040297..36631580212...4702791428260...577497122717510
%C .0.29754.13180270.3282238215.797807876394.179057922328623.38429377558548084
%H R. H. Hardin, <a href="/A283386/b283386.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1)
%F k=2: [order 24]
%F k=3: [order 32]
%F k=4: [order 57] for n>58
%e Some solutions for n=4 k=4
%e ..1..1..1..0. .1..0..1..1. .0..0..1..0. .1..1..1..0. .0..0..0..1
%e ..0..0..1..0. .1..0..1..1. .1..1..0..0. .1..0..0..1. .1..0..1..0
%e ..0..0..1..0. .0..0..0..0. .1..0..1..0. .0..0..1..1. .1..0..1..1
%e ..0..1..1..1. .0..1..0..1. .1..1..0..0. .1..0..0..1. .0..1..1..0
%K nonn,tabl
%O 1,8
%A _R. H. Hardin_, Mar 06 2017
