login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283269 Number of ways to write n as x^2 + y^2 + z^2 with x,y,z integers such that x + 3*y + 5*z is a square 4

%I #15 Mar 04 2017 13:51:23

%S 1,1,2,2,0,3,5,0,3,4,4,1,0,3,7,0,1,5,3,3,0,5,3,0,6,2,8,2,0,8,3,0,2,3,

%T 6,7,0,2,6,0,6,8,4,1,0,4,3,0,2,3,7,5,0,4,13,0,8,5,2,3,0,6,6,0,0,7,13,

%U 2,0,7,3,0,5,4,9,1,0,5,3,0,3

%N Number of ways to write n as x^2 + y^2 + z^2 with x,y,z integers such that x + 3*y + 5*z is a square

%C Conjecture: (i) a(2^k*m) > 0 for any positive odd integers k and m. Also, a(4*n+1) = 0 only for n = 63.

%C (ii) For any positive odd integers k and m, we can write 2^k*m as x^2 + y^2 + z^2 with x,y,z integers such that x + 3*y + 5*z is twice a square.

%C (iii) For any positive odd integer n not congruent to 7 modulo 8, we can write n as x^2 + y^2 + z^2 with x,y,z integers such that x + 3*y + 4*z is a square.

%C (iv) Let n be any nonnegative integer. Then we can write 8*n + 1 as x^2 + y^2 + z^2 with x + 3*y a square, where x and y are integers, and z is a positive integer. Also, except for n = 2255, 4100 we can write 4*n + 2 as x^2 + y^2 + z^2 with x + 3*y a square, where x,y,z are integers.

%C (v) For each n = 0,1,2,..., we can write 8*n + 6 as x^2 + y^2 + z^2 with x + 2*y a square, where x,y,z are integers with y nonnegative and z odd.

%C The Gauss-Legendre theorem asserts that a nonnegative integer can be written as the sum of three squares if and only if it is not of the form 4^k*(8m+7) with k and m nonnegative integers. Thus a(4^k*(8m+7)) = 0 for all k,m = 0,1,2,....

%C See also A283273 for a similar conjecture.

%H Zhi-Wei Sun, <a href="/A283269/b283269.txt">Table of n, a(n) for n = 0..10000</a>

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017.

%e a(11) = 1 since 11 = 3^2 + 1^2 + (-1)^2 with 3 + 3*1 + 5*(-1) = 1^2.

%e a(43) = 1 since 43 = (-5)^2 + (-3)^2 + 3^2 with (-5) + 3*(-3) + 5*3 = 1^2.

%e a(75) = 1 since 75 = (-1)^2 + 5^2 + 7^2 with (-1) + 3*5 + 5*7 = 7^2.

%e a(262) = 1 since 262 = 1^2 + 15^2 + (-6)^2 with 1 + 3*15 + 5*(-6) = 4^2.

%e a(277) = 1 since 277 = (-6)^2 + 4^2 + 15^2 with (-6) + 3*4 + 5*15 = 9^2.

%e a(617) = 1 since 617 = 17^2 + 18^2 + 2^2 with 17 + 3*18 + 5*2 = 9^2.

%e a(1430) = 1 since 1430 = (-13)^2 + (-6)^2 + 35^2 with (-13) + 3*(-6) + 5*35 = 12^2.

%e a(5272) = 1 since 5272 = (-66)^2 + 30^2 + (-4)^2 with (-66) + 3*30 + 5*(-4) = 2^2.

%e a(7630) = 1 since 7630 = (-78)^2 + 39^2 + 5^2 with (-78) + 3*39 + 5*5 = 8^2.

%e a(7933) = 1 since 7933 = (-56)^2 + 69^2 + (-6)^2 with (-56) + 3*69 + 5*(-6) = 11^2.

%e a(14193) = 1 since 14193 = (-7)^2 + 112^2 + 40^2 with (-7) + 3*112 + 5*40 = 23^2.

%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];

%t Do[r=0;Do[If[SQ[n-x^2-y^2]&&SQ[(-1)^i*x+(-1)^j*3y+(-1)^k*5*Sqrt[n-x^2-y^2]],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{i,0,Min[x,1]},{j,0,Min[y,1]},{k,0,Min[Sqrt[n-x^2-y^2],1]}];Print[n," ",r];Continue,{n,0,80}]

%Y Cf. A000290, A005875, A271518, A283170, A283196, A283204, A283205, A283239, A283273.

%K nonn

%O 0,3

%A _Zhi-Wei Sun_, Mar 04 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 12:31 EDT 2024. Contains 371937 sequences. (Running on oeis4.)