login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283115 Number of nonequivalent ways (mod D_3) to place 4 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal. 4
0, 0, 0, 0, 0, 3, 40, 242, 1038, 3504, 9998, 25158, 57410, 121023, 239148, 447552, 799764, 1373400, 2278290, 3666036, 5742396, 8781111, 13141326, 19287246, 27811906, 39463424, 55177122, 76109826, 103681214, 139618479, 186008654, 245354424, 320640264, 415401264 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
In terms of triangular chess: Number of nonequivalent ways (mod D_3) to arrange 4 nonattacking rooks on an n X n X n board.
Reflections and rotations of placements are not counted. For numbers if they are to be counted see A193982.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,0,-6,0,6,8,-12,-9,13,6,-6,-13,9,12,-8,-6,0,6,0,-3,1).
FORMULA
a(n) = (5*n^8 - 100*n^7 + 810*n^6 - 3336*n^5 + 6940*n^4 - 5120*n^3 - 4080*n^2 + 6336*n)/11520 + IF(MOD(n, 2) = 1, 4*n^3 - 38*n^2 + 144*n - 207)/768 + IF(MOD(n, 3) = 1, n^2 - 6*n + 8)/18 + IF(MOD(n, 6) = 1, -1)/6.
G.f.: x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 01 2017
EXAMPLE
There are a(6) = 3 ways to place 4 points on an 6 X 6 X 6 grid, rotations and reflections ignored:
. X .
. X . . X .
. . . . . . . . X
. . X . . . X . . . . .
X . . . . . X . . . . X . . .
. . . X . . . . . X . . . . . X . .
MATHEMATICA
Table[(5 n^8 - 100 n^7 + 810 n^6 - 3336 n^5 + 6940 n^4 - 5120 n^3 - 4080 n^2 + 6336 n)/11520 + Boole[OddQ@ n] (4 n^3 - 38 n^2 + 144 n - 207)/768 + Boole[Mod[n, 3] == 1] (n^2 - 6 n + 8)/18 - Boole[Mod[n, 6] == 1]/6, {n, 34}] (* or *)
Rest@ CoefficientList[Series[x^6*(3 + 31 x + 122 x^2 + 330 x^3 + 630 x^4 + 920 x^5 + 1128 x^6 + 1224 x^7 + 1124 x^8 + 924 x^9 + 644 x^10 + 336 x^11 + 117 x^12 + 27 x^13)/((1 - x)^9*(1 + x)^4*(1 - x + x^2) (1 + x + x^2)^3), {x, 0, 34}], x] (* Michael De Vlieger, Mar 01 2017 *)
PROG
(PARI) concat(vector(5), Vec(x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Mar 01 2017
CROSSREFS
Cf. A193982, A283113, A283114 (3 points), A283116 (5 points).
Sequence in context: A160659 A197247 A065815 * A013257 A013250 A013255
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Mar 01 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:16 EST 2023. Contains 367616 sequences. (Running on oeis4.)