login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices k of nontrivial Riemann zeta zeros such that floor(Im(zetazero(k))/(2*Pi)*log(Im(zetazero(k))/(2*Pi*e)) + 7/8) - k + 1 = 1.
7

%I #47 Aug 31 2021 01:12:35

%S 127,196,233,289,368,380,401,462,519,568,596,619,627,655,669,693,716,

%T 729,767,796,820,849,858,888,965,996,1029,1035,1044,1114,1179,1210,

%U 1251,1277,1291,1308,1332,1343,1431,1457,1488,1496,1499

%N Indices k of nontrivial Riemann zeta zeros such that floor(Im(zetazero(k))/(2*Pi)*log(Im(zetazero(k))/(2*Pi*e)) + 7/8) - k + 1 = 1.

%C Conjecture 1: The union of this sequence and A282794 is A153815.

%C Conjecture 2: The zeta zeros whose indices are terms of this sequence are the locations where the zeta zero counting function, (RiemannSiegelTheta(t) + Im(log(zeta(1/2 + i*t))))/Pi + 1 overcounts the number of zeta zeros on the critical line.

%C Conjecture 3: This sequence consists of the numbers k such that sign(Im(zetazero(k)) - 2*Pi*e*exp(LambertW((k - 7/8)/e))) = 1. Verified for the first 100000 zeta zeros.

%H Robert G. Wilson v, <a href="/A282793/b282793.txt">Table of n, a(n) for n = 1..10000</a>

%t (* Definition: *)

%t fQ[n_] := Block[{a = N[Im@ ZetaZero@ n, 32]}, Floor[a (Log[a] - Log[2Pi] - 1)/(2Pi) + 7/8] == n]; Select[ Range@ 1550, fQ] (* _Robert G. Wilson v_, Feb 21 2017 *)

%t (* Definition: *)

%t Monitor[Flatten[Position[Table[Floor[Im[ZetaZero[n]]/(2*Pi)*Log[Im[ZetaZero[n]]/(2*Pi*Exp[1])] + 7/8] - n + 1, {n, 1, 1500}], 1]], n]

%t (* Conjecture 3: *)

%t Monitor[Flatten[Position[Table[Sign[Im[ZetaZero[n]] - 2*Pi*E*Exp[LambertW[(n - 7/8)/E]]], {n, 1, 1500}], 1]], n]

%Y Cf. A002505, A135297, A153815, A273061, A282794, A282896, A282897.

%K nonn

%O 1,1

%A _Mats Granvik_, Feb 21 2017