%I
%S 0,12,533,6116,73469,855448,9375582,100393362,1053618468,10851865132,
%T 110231326957,1106423328366,10991913628813,108248005283306,
%U 1057861467494074,10268295960149394,99073963762531602,950793233680462562
%N Number of nX4 0..1 arrays with no 1 equal to more than two of its king-move neighbors, with the exception of exactly two elements.
%C Column 4 of A282593.
%H R. H. Hardin, <a href="/A282589/b282589.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 21*a(n-1) -99*a(n-2) -278*a(n-3) +102*a(n-4) +17181*a(n-5) -872*a(n-6) -126009*a(n-7) -517632*a(n-8) +1166714*a(n-9) +2396433*a(n-10) +1041354*a(n-11) -17643316*a(n-12) +14438214*a(n-13) +9960036*a(n-14) -34654204*a(n-15) +20403396*a(n-16) -16378614*a(n-17) -10212348*a(n-18) +23075214*a(n-19) -33208896*a(n-20) +6019068*a(n-21) +529872*a(n-22) -8735502*a(n-23) +9457342*a(n-24) -7227768*a(n-25) +241416*a(n-26) +1429254*a(n-27) -102708*a(n-28) +1237242*a(n-29) -246196*a(n-30) -257508*a(n-31) -50715*a(n-32) -14023*a(n-33) +28263*a(n-34) +3480*a(n-35) -286*a(n-36) -441*a(n-37) -312*a(n-38) +71*a(n-39) -6*a(n-40) +6*a(n-41) -a(n-42)
%e Some solutions for n=4
%e ..1..0..0..1. .1..0..0..1. .0..0..0..0. .0..0..1..1. .0..1..1..0
%e ..0..1..1..1. .1..1..0..0. .1..0..1..0. .1..0..0..1. .1..0..0..1
%e ..1..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..1..0. .0..1..0..0
%e ..1..0..0..0. .1..0..0..1. .0..1..0..1. .0..0..1..1. .0..1..1..1
%Y Cf. A282593.
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 19 2017
|