Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 May 28 2021 00:53:26
%S 1,2,6,21,82,346,1547,7236,35090,175268,897273,4690392,24961300,
%T 134917123,739213795,4099067786,22973964976,129998127216,741951610676,
%U 4267733183951,24722711348105,144147076572858,845460619537567,4986014094568416,29553202933497989,175988793822561947,1052569034807964425,6320797287983675428,38100643422386086309,230476496238489596293,1398812189780917895946,8516159717810715750712,51999675864641162206960,318388601290603235387353,1954555567303560704554767,12028490623505389875097231,74197729371621673254309374,458706129189543207063584184,2841808950641424998337843123
%N Number of permutations of size n avoiding the three vincular patterns 2-41-3, 3-14-2 and 3-41-2.
%C a(n) is the number of permutations of size n that are both Baxter and twisted Baxter.
%C a(n) is also the number of excursions in the positive quarter-plane, using n steps, and with step (multi-)set {(-1,0),(0,-1),(1,-1),(1,0),(0,1),(0,0),(0,0)}.
%H Vaclav Kotesovec, <a href="/A281784/b281784.txt">Table of n, a(n) for n = 1..1000</a>
%H A. Bostan, K. Raschel, B. Salvy, <a href="https://hal.archives-ouvertes.fr/hal-00697386/file/BoRaSa12.pdf">Non D-finite excursions in the quarter plane</a>, J. Comb. Theory A, 121:45-63, 2014.
%H Mathilde Bouvel, Veronica Guerrini, Andrew Rechnitzer and Simone Rinaldi, <a href="https://arxiv.org/abs/1702.04529">Semi-Baxter and strong-Baxter: two relatives of the Baxter sequence.</a> Arxiv preprint, 2017.
%H Arturo Merino and Torsten Mütze, <a href="https://arxiv.org/abs/2103.09333">Combinatorial generation via permutation languages. III. Rectangulations</a>, arXiv:2103.09333 [math.CO], 2021.
%F The generating function for a(n) is A(x;1,1) where A(x;y,z) satisfies A(x;y,z) = x*y*z + (x/(1-y))*(y*A(x;1,z) - A(x;y,z)) + x*z*A(x;y,z) + (x*y*z/(1-z))*(A(x;y,1) - A(x;y,z)).
%F Consequently, neither A(x;1,1) nor A(x;y,z) are D-finite (see preprint of Bouvel et al.).
%e For n=4, there are a(4)=21 permutations that avoid 2-41-3, 3-14-2 and 3-41-2 (all permutations of size 4 except 2413, 3142 and 3412).
%p S:=x*y*z:
%p s[1]:=1:
%p for en from 2 to 200 do
%p x*y/(1-y)*(subs(y=1,S))-x/(1-y)*S+x*z*S+x*y*z/(1-z)*(subs(z=1,S))-x*y*z/(1-z)*S;
%p S:=normal(%):
%p s[en]:=subs(x=1,z=1,y=1,S);
%p od:
%p # Veronica Guerrini, Mar 01 2017
%Y Baxter and twisted Baxter permutations are both enumerated by the Baxter numbers A001181.
%K easy,nonn,walk
%O 1,2
%A _Mathilde Bouvel_, Mar 01 2017