login
Expansion of Sum_{i>=0} x^(2^i)/(1 - x^(2^i)) / Product_{j>=0} (1 - x^(2^j)).
3

%I #9 May 04 2021 18:39:39

%S 1,3,5,10,14,23,29,45,55,79,93,130,150,199,225,296,332,423,469,594,

%T 654,807,881,1085,1179,1423,1537,1850,1990,2355,2521,2983,3185,3719,

%U 3957,4618,4902,5655,5985,6909,7299,8343,8793,10050,10574,11979,12577,14260,14952,16823,17609,19818,20718,23155,24169,27033

%N Expansion of Sum_{i>=0} x^(2^i)/(1 - x^(2^i)) / Product_{j>=0} (1 - x^(2^j)).

%C Total number of parts in all partitions of n into powers of 2 (A000079).

%C Convolution of A001511 and A018819.

%H Alois P. Heinz, <a href="/A281688/b281688.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F G.f.: Sum_{i>=0} x^(2^i)/(1 - x^(2^i)) / Product_{j>=0} (1 - x^(2^j)).

%e a(4) = 10 because we have [4], [2, 2], [2, 1, 1], [1, 1, 1, 1] and 1 + 2 + 3 + 4 = 10.

%p b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<0, 0, (p->

%p `if`(p>n, 0, (h-> h+[0, h[1]])(b(n-p, i))))(2^i)+b(n, i-1)))

%p end:

%p a:= n-> b(n, ilog2(n))[2]:

%p seq(a(n), n=1..56); # _Alois P. Heinz_, May 04 2021

%t Rest[CoefficientList[Series[Sum[x^2^i/(1 - x^2^i), {i, 0, 20}]/Product[1 - x^2^j, {j, 0, 20}], {x, 0, 56}], x]]

%Y Cf. A000079, A001511, A018819, A343944.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Jan 27 2017