login
Number of nX5 0..1 arrays with no element equal to more than two of its horizontal, diagonal or antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1

%I #4 Jan 21 2017 07:59:56

%S 0,170,689,2146,5892,13446,30959,73600,169161,384546,874926,1975442,

%T 4434817,9919920,22098196,49065818,108622142,239782662,528047528,

%U 1160306466,2544313452,5568815362,12167899747,26544765678,57823995949

%N Number of nX5 0..1 arrays with no element equal to more than two of its horizontal, diagonal or antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

%C Column 5 of A281400.

%H R. H. Hardin, <a href="/A281397/b281397.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) -a(n-2) +5*a(n-3) -15*a(n-4) -5*a(n-5) -4*a(n-6) +22*a(n-7) +44*a(n-8) -6*a(n-9) -23*a(n-10) -73*a(n-11) -16*a(n-12) +48*a(n-13) +39*a(n-14) +37*a(n-15) -33*a(n-16) -39*a(n-17) +9*a(n-18) +9*a(n-19) for n>30

%e Some solutions for n=4

%e ..0..1..0..0..1. .0..0..1..0..0. .0..0..1..1..0. .0..0..1..1..0

%e ..1..1..0..1..1. .1..0..1..0..1. .1..1..0..0..0. .1..0..1..1..0

%e ..1..0..0..1..0. .1..1..1..0..0. .0..1..0..1..0. .0..0..1..0..1

%e ..0..1..0..1..0. .0..0..0..1..1. .0..1..0..1..0. .0..1..1..0..0

%Y Cf. A281400.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 21 2017