%I #8 Feb 18 2019 20:04:22
%S 0,0,6,36,160,676,2692,10352,38868,143276,520736,1871380,6663484,
%T 23545568,82661076,288590204,1002706896,3469289876,11959062188,
%U 41088781264,140757051348,480912678028,1639160372000,5574818816340
%N Number of n X 2 0..1 arrays with no element equal to more than two of its horizontal, diagonal or antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%H R. H. Hardin, <a href="/A281394/b281394.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n1)  7*a(n2)  6*a(n3)  5*a(n4) + 12*a(n5) + 4*a(n6)  4*a(n8).
%F Empirical g.f.: 2*x^3*(1 + x  x^2)*(3  3*x  x^2) / (1  3*x  x^2 + 2*x^4)^2.  _Colin Barker_, Feb 18 2019
%e Some solutions for n=4:
%e ..0..1. .0..0. .0..0. .0..1. .0..1. .0..1. .0..0. .0..1. .0..0. .0..1
%e ..1..1. .0..1. .0..0. .0..1. .1..1. .0..1. .0..0. .0..1. .0..0. .0..1
%e ..0..1. .1..1. .1..0. .1..1. .0..1. .1..1. .1..0. .0..0. .0..1. .0..0
%e ..1..0. .0..1. .0..1. .0..1. .1..1. .1..1. .0..0. .0..1. .1..1. .0..0
%Y Column 2 of A281400.
%K nonn
%O 1,3
%A _R. H. Hardin_, Jan 21 2017
