login
Number of factorizations of n>=2 into factors greater than 1 with no common divisor other than 1 (a(1)=0 by convention).
108

%I #25 Sep 23 2018 21:25:53

%S 0,0,0,0,0,1,0,0,0,1,0,2,0,1,1,0,0,2,0,2,1,1,0,3,0,1,0,2,0,4,0,0,1,1,

%T 1,5,0,1,1,3,0,4,0,2,2,1,0,5,0,2,1,2,0,3,1,3,1,1,0,8,0,1,2,0,1,4,0,2,

%U 1,4,0,9,0,1,2,2,1,4,0,5,0,1,0,8,1,1,1,3,0,8,1,2,1,1,1,7,0,2,2,5

%N Number of factorizations of n>=2 into factors greater than 1 with no common divisor other than 1 (a(1)=0 by convention).

%C Let (e1, e2, ..., ek) be a prime-signature of n (that is, n = p^e1 * q^e2 * ... * r^ek for some primes, p, q, ..., r). Then a(n) is the number of ways of partitioning multiset {e1 x 1, e2 x 2, ..., ek x k} into multisets such that none of the numbers 1 .. k is present in all member multisets of that set partition. - _Antti Karttunen_, Sep 08 2018

%H Antti Karttunen, <a href="/A281116/b281116.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%e a(6)=1: (2*3)

%e a(12)=2; (2*2*3) (3*4)

%e a(24)=3: (2*2*2*3) (2*3*4) (3*8)

%e a(30)=4: (2*3*5) (2*15) (3*10) (5*6)

%e a(36)=5: (2*2*3*3) (2*2*9) (2*3*6) (3*3*4) (4*9)

%e a(96)=7: (2*2*2*2*2*3) (2*2*2*3*4) (2*2*3*8) (2*3*4*4) (2*3*16) (3*4*8) (3*32).

%t postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t Table[Length[Select[postfacs[n],GCD@@#===1&]],{n,2,100}]

%o (PARI) A281116(n, m=n, facs=List([])) = if(1==n, (1==gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A281116(n/d, d, newfacs))); (s)); \\ _Antti Karttunen_, Sep 08 2018

%Y Cf. A001055, A007916, A089233, A162247, A259936, A281113, A317751.

%Y First column of A317748.

%K nonn

%O 1,12

%A _Gus Wiseman_, Jan 15 2017

%E Term a(1) = 0 prepended by _Antti Karttunen_, Sep 08 2018