login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280218 Number of binary necklaces of length n with no subsequence 0000. 5

%I

%S 1,2,3,5,6,11,15,27,43,75,125,228,391,707,1262,2285,4119,7525,13691,

%T 25111,46033,84740,156123,288529,533670,989305,1835983,3412885,

%U 6351031,11834623,22074821,41222028,77048131,144148859,269913278,505826391,948652695,1780473001,3343960175,6284560319,11818395345

%N Number of binary necklaces of length n with no subsequence 0000.

%C a(n) is the number of cyclic sequences of length n consisting of zeros and ones that do not contain four consecutive zeros provided we consider as equivalent those sequences that are cyclic shifts of each other.

%H P. Flajolet and M. Soria, <a href="http://algo.inria.fr/flajolet/Publications/cycle2.ps.gz">The Cycle Construction</a>, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.

%H P. Flajolet and M. Soria, <a href="http://dx.doi.org/10.1137/0404006">The Cycle Construction</a>, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.

%H F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a>

%H F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only]

%H F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only]

%H L. Zhang and P. Hadjicostas, <a href="http://appliedprobability.org/content.aspx?Group=tms&amp;Page=TMS402">On sequences of independent Bernoulli trials avoiding the pattern '11..1'</a>, Math. Scientist, 40 (2015), 89-96.

%F a(n) = (1/n) * Sum_{d divides n} totient(n/d) * A073817(d).

%F G.f.: Sum_{k>=1} (phi(k)/k) * log(1/(1-B(x^k))) where B(x) = x*(1+x+x^2+x^3).

%e a(5)=6 because we have six binary cyclic sequences of length 5 that avoid four consecutive zeros: 00011, 00101, 00111, 01101, 01111, 11111.

%t Table[(1/n) Sum[EulerPhi[n/d] SeriesCoefficient[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, d}], {d, Divisors@ n}], {n, 41}] (* _Michael De Vlieger_, Dec 30 2016 *)

%o (PARI) N=44; x='x+O('x^N);

%o B(x)=x*(1+x+x^2+x^3);

%o Vec(sum(k=1, N, eulerphi(k)/k * log(1/(1-B(x^k))))) \\ _Joerg Arndt_, Dec 29 2016

%Y Cf. A000358, A073817, A093305, A280303.

%K nonn

%O 1,2

%A _Petros Hadjicostas_, Dec 29 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 14:10 EST 2020. Contains 338683 sequences. (Running on oeis4.)