%I #4 Dec 27 2016 23:22:19
%S 1,1,1,1,2,2,2,2,3,4,4,4,5,6,6,6,7,8,9,9,10,11,12,12,13,15,16,17,18,
%T 20,21,22,23,25,27,28,30,32,34,35,37,39,41,43,45,48,50,52,54,57,60,62,
%U 65,68,72,74,77,80,84,87,90,94,98,102,106,110,114,118,123,127,132,136,142,147,152,157,163,169,174,180,186,193,199
%N Expansion of Product_{k>=2} 1/(1 - x^(Fibonacci(k)^2)).
%C Number of partitions of n into squares of Fibonacci numbers (with a single type of 1).
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F G.f.: Product_{k>=2} 1/(1 - x^(Fibonacci(k)^2)).
%e a(8) = 3 because we have [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
%t CoefficientList[Series[Product[1/(1 - x^Fibonacci[k]^2), {k, 2, 20}], {x, 0, 82}], x]
%Y Cf. A000119, A000121, A001156, A003107, A007000, A007598, A238999, A239002.
%K nonn
%O 0,5
%A _Ilya Gutkovskiy_, Dec 27 2016