%I
%S 4,2,2,2,2,2,2,17,294,3,4,5,16,2,3,4,2,4,2,3,2,2,2,2,2,2,2,2,2,2,2,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N Negative continued fraction of Pi (also called negative continued fraction expansion of Pi).
%C Appears that these terms are related to continued fraction of Pi through simple transforms; original continued fraction terms X,1 > negative continued fraction term X+2 (e.g., 15,1>17, and 292,1>294); other transforms are to be determined.
%D Leonard Eugene Dickson, History of the Theory of Numbers, page 379.
%e Pi = 4  (1 / (2  (1 / (2  (1 / ...))))).
%o (PARI) \p10000; p=Pi;for(i=1,300,print(i," ",ceil(p)); p=ceil(p)p;p=1/p )
%Y Cf. A001203 (continued fraction of Pi).
%Y Cf. A133593 (exact continued fraction of Pi).
%Y Cf. A280136 (negative continued fraction of e).
%K nonn
%O 1,1
%A _Randy L. Ekl_, Dec 26 2016
