|
|
A280070
|
|
Indices of 10-gonal numbers (A001107) that are also centered 10-gonal numbers (A062786).
|
|
1
|
|
|
1, 11, 191, 3421, 61381, 1101431, 19764371, 354657241, 6364065961, 114198530051, 2049209474951, 36771572019061, 659839086868141, 11840331991607471, 212466136762066331, 3812550129725586481, 68413436198298490321, 1227629301439647239291, 22028913989715351816911
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also positive integers x in the solutions to 4*x^2 - 5*y^2 - 3*x + 5*y - 1 = 0, the corresponding values of y being A133273.
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..750
Index entries for linear recurrences with constant coefficients, signature (19,-19,1).
|
|
FORMULA
|
a(n) = (6 + (5+2*sqrt(5))*(9+4*sqrt(5))^(-n) + (5-2*sqrt(5))*(9+4*sqrt(5))^n)/16.
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 8*x + x^2) / ((1 - x)*(1 - 18*x + x^2)).
|
|
EXAMPLE
|
11 is in the sequence because the 11th 10-gonal number is 451, which is also the 10th centered 10-gonal number.
|
|
PROG
|
(PARI) Vec(x*(1 - 8*x + x^2) / ((1 - x)*(1 - 18*x + x^2)) + O(x^30))
|
|
CROSSREFS
|
Cf. A001107, A062786, A128922, A133273.
Sequence in context: A185123 A036936 A002195 * A171553 A333759 A068649
Adjacent sequences: A280067 A280068 A280069 * A280071 A280072 A280073
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Colin Barker, Dec 25 2016
|
|
STATUS
|
approved
|
|
|
|