%I #4 Dec 25 2016 06:40:15
%S 5,19,104,603,3729,23564,145485,915505,5786757,36671797,233383456,
%T 1487001440,9487581421,60571549809,386914206005,2472215283933,
%U 15799867880212,100989585485103,645564463469368,4126929495349807
%N Number of nX6 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
%C Column 6 of A280069.
%H R. H. Hardin, <a href="/A280067/b280067.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A280067/a280067.txt">Empirical recurrence of order 87</a>
%F Empirical recurrence of order 87 (see link above)
%e Some solutions for n=4
%e ..0..0..1..1..1..1. .0..1..1..0..0..0. .0..0..0..0..1..1. .0..0..0..0..0..1
%e ..0..1..1..1..1..1. .0..1..1..0..0..0. .0..0..0..1..1..1. .0..0..0..0..1..1
%e ..1..1..0..0..1..1. .0..0..1..1..0..0. .1..1..1..1..1..0. .1..1..0..0..1..1
%e ..1..0..0..0..0..0. .0..0..1..1..1..1. .1..1..1..1..0..0. .1..1..0..0..1..1
%Y Cf. A280069.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 25 2016
