login
Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
1

%I #4 Dec 17 2016 13:20:58

%S 3,6,47,385,3245,27346,230128,1936687,16300179,137192011,1154685911,

%T 9718495665,81796457512,688446233557,5794361407059,48768695462933,

%U 410465538968189,3454715318219146,29076881764570866,244727850397713496

%N Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

%C Column 5 of A279709.

%H R. H. Hardin, <a href="/A279706/b279706.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 17*a(n-1) -107*a(n-2) +388*a(n-3) -991*a(n-4) +1845*a(n-5) -2506*a(n-6) +2365*a(n-7) -1546*a(n-8) +695*a(n-9) -219*a(n-10) +44*a(n-11) -4*a(n-12) for n>13

%e Some solutions for n=4

%e ..0..1..0..1..0. .0..1..0..1..0. .0..1..1..0..1. .0..1..0..1..1

%e ..0..1..0..1..0. .1..0..1..1..0. .0..0..0..1..0. .0..1..0..0..1

%e ..1..0..1..0..1. .1..0..1..0..0. .1..1..1..0..1. .0..0..1..0..1

%e ..0..1..0..1..0. .1..0..1..1..0. .0..0..1..0..1. .1..0..1..0..1

%Y Cf. A279709.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2016