%I #4 Dec 15 2016 23:46:37
%S 1,-2,0,3,-3,0,4,-7,5,5,-16,15,2,-26,39,-19,-38,92,-77,-34,178,-220,
%T 48,293,-537,343,363,-1129,1146,94,-2050,3029,-1290,-3039,6855,-5577,
%U -2738,13513,-16417,3007,22633,-40108,24584,28535,-85117,84600,10247,-156524
%N Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2).
%H Clark Kimberling, <a href="/A279587/b279587.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2).
%t z = 30; r = Sqrt[2];
%t f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]
%t CoefficientList[Series[1/f[x], {x, 0, 2*z}], x] (* A279587 *)
%Y Cf. A001951.
%K sign,easy
%O 0,2
%A _Clark Kimberling_, Dec 15 2016
|