Algorithms for computing A279413 and from this
A279414, A186434 and A271908

Lars Blomberg

February 17, 2017

1 Introduction

A279413: Triangle read by rows: T'(N, K), N >= K >= 1, is the number of isosceles triangles
that have a bounding box of size N X K.

A279414: Number of unique isosceles triangles that can be formed from the n? points of nXn
grid of points.

A186434: Number of isosceles triangles that can be formed from the n? points of nXn grid of
points (or geoboard).

A271908: A186434(n)/4.

The algorithm for A279413 is presented first, and from this A186434, A271908 and A279414 are
computed.

2 Notation

® The triangle vertex between the same-length sides.
@ Alternative positions for some point.
a, b, ¢ The vertices of the triangles.

len The length of the two equal sides.

In the following, let n = N — 1,k = K — 1.

3 Classification of configurations

The configurations of the three points are classified according to which corner points are occupied:
A) Three, B) Two adjacent, C) Two opposite, D) One. The illustrations have n = 7,k = 5.

012345¢67
0 |a
1
2
A)3
4
5 |c b
0123456 7 01 2 3 45 6 7
0 |a 0 |a c
1 D 1
2 a5} 2
Bl)3 b B2)3
4 a5} 4
5 |c 5 ® D Bb B D
01 2 3 4 5 6 7 01 2 3 4 5 6 7
0 |a 0 |a
1 | & 1 ®
2 | &\D D 2 b
0)36969696969 D)3 ©®
4 1 b-& & D D 4 S
5) ® D D D D D c 5 ® b c Db D D

In A) Only ¢ can be ®, obviously.

In B1) a or b can be ®, but not ¢ because of symmetry (swapping a <+ ¢ is the same problem),
and b cannot occupy the right corners because then we have configuration A).

In B2) @ or b can be ®, but not ¢ because of symmetry, and b cannot occupy the bottom corners
because then we have configuration A).

In C) a and b are fixed in opposite corners and b is allowed to take any position within the
triangle below the line ac. Only b can be ® and cannot occupy the bottom-left corner because
them we have configuration A).

In D) a is fixed in the top left corner, b takes positions on the right side, and ¢ takes positions
on the bottom side. Any of a, b, c can be ® and b, ¢ cannot occupy a corner since then we get
configuration A) or B).

3.1 Case A)

Only ¢ can be ® and solutions are only possible when k = m and then there are 4 solutions
taking mirroring into account.

3.2 Case B1)

Letting b = ® then if k is odd there are 2 solutions (with b to the left and to the right).

Letting a = ® and setting b = (r,n) we must have
n? = r2 4 n? which is only obtained when k = n and then we must have » = 0, which is not

allowed, so there are no solutions to this configuration.

3.3 Case B2)

Letting b = ® then if n is odd there are 2 solutions (with b in top or bottom).

Letting a = ® and setting b = (k, s) we must have n? = s2 + k2. For k = n we get s = 0
which is not allowed.

Otherwise len = sqrt(n? — k?) which is a solution when len is an integer. Each len gives 4
solutions with mirroring.

3.4 Case C)

Let b have coordinates row, column = r, s.

Then we must have r2 + s2 = (k —)% + (k — s)2, or
r?2+ 52 =KkZ2+ 12— 2rk +n?+ 52— 2sn, or

2rk + 2sn = k? 4+ n?,

which is a diophantine equation in 7, s.

Solve this equation and keep the points (if any) which are within the bounding box and lie below
the line a — c.

By mirroring in vertical and horisontal we get 4 times as many solutions.

Note that by construction there is no risk that the third side is equal to the other two.

3.5 Case D)

Place ® in a.

Then len = n?2 + b2 = k%2 + 2 # (n — c)? + (k — b)2.

Solving for ¢ gives ¢ = b% + (n? — k?)

When k£ = n we get b = ¢ so there are n — 1 solutions.

Otherwise iterate b = 1...k — 1 and count those for which b2 4+ (n? — k?) is a perfect square
and 0 < ¢ < n.

Place ® in b.

Then len = n? +b% = (n — ¢)?2 + (k — b)2 # k? + 2.
n2 4+ b2 =n? — 2¢en + 2 + k2 — 2bk + b2

0= —2cn+c%+ k% —2bk ... (a)
c2—2cn+k%2—20k=0

Solving for ¢ yields ¢ = 1 (2n + —+/4n? — 4(k? — 2bk).
c=mn+ —v/n?+ 2bk — k2.
We require 0 < c < n
Or, 0 < n + —+v/n? + 2bk — k2 < n so we must choose the negative sign.
—n< —vn24+2bk—-k2<0
n2 +2bk — k2 >0
0 < vn? + 2bk — k?) < n.
For a solution n? + 2bk — k2 must be a square, call it d2,0 < d < n.
So d? = n? + 2bk — k2, and
b — dz—H;Z—nz
Try all 0 < d < m and count those that make d? 4 k2 —n? divisible by 2k such that 0 < b < k.
(and ¢ = n — d).
Place ® in c.
Then s = k2 4+ c2 = (n —¢)?2 + (k — b)? # n? + b2
Similar calculations as above yields:

c — d?4+n?—k?

2
Try all 0 < d < k and count those that makes d? +n? —k? divisible by 2n such that 0 < ¢ < n
(and b = k — d).

Note that in all the three cases we must check that the third side is not equal len (which never
happens for n, k < 10000).

By mirroring in vertical and horisontal we get 4 times as many solutions.

4 A186434 and A271908

A186434 and A271908 = A186434/4 can now be obtained in the following way.

Within a square of size N (here N = 8) all rectangles (some are squares) of size (n,m), m <
m < IN are placed in all possible positions, illustrated here by n = 6, m = 4.

6 7

o o & 0 O
e 6 0 0 —
o 6 0 0|1V
o 6 0 0|
o 6 0 0|~
-0 O 0| Ut

N O U W N = O

All isosceles triangles within all rectangles are unique. This remains to be proved.

A rectangle can be placed in N — n + 1 positions horisontally (here 8 — 6 + 1 = 3) and in
N — k + 1 positions vertically (here 8 — 4 4+ 1 = 5).

So the total number of positions for the rectangle are S = (N —n 4+ 1) * (N — k 4+ 1) (here
S =3x%5=15).

And if, as in the illustration, it is a true rectangle we can mirror it in one of the diagonals, giving
twice as many positions 2 * S (here 2 * 15 = 30).

Finally, by multiplying by the number of triangles within this rectangle which is given by
A279413(n, k) we obtain the total 2 % S * A279413(n, k) (here A279413(6,4) = 8 so
2 % 15 * 8 = 240).

However, when n = k the mirroring does not yield a different form so in this case the factor 2
must be left out.

Summing over all rectangles/squares that fit into N * IN we obtain:

A186434(N) = SN S s (N —n+1)* (N —k+ 1) * A279413(n, k) where n = 1
when kK = n and n = 2 otherwise.

And A279414 are the row sums of A279413:
A279414(N) = Y0, A279413(n, k).

5 Summary

Implementing this algorithm in C'# and running it for IV, K = 1..1000, the 499, 500 terms of
A279413 are generated in about one hour.

The 10,000 terms of A186434 took another 14 hours.

Checks have been made against a brute force implementation derived from Nathaniel Johnston’s
C program in A186434 up to n = 200.

