%I #9 Dec 15 2016 23:48:36
%S 1,1,1,2,5,4,5,4,5,5,5,6,7,7,5,8
%N Independent domination number for queens' graph on an n X n toroidal board.
%C That is, the minimal number of queens needed to cover an n X n toroidal chessboard so that every square either has a queen on it or is under attack by a queen, but not both.
%C A279402(n) <= a(n) <= A085801(n).
%H Christina M. Mynhardt, <a href="http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193/c/dmgt.1193.pdf">Upper bounds for the domination numbers of toroidal queens graphs</a>, Discussiones Mathematicae Graph Theory, 23 (2003), 163-175, DOI:10.7151/dmgt.1193.
%F a(3*n) = n if n = 1, 5, 7, 11 (mod 12).
%Y Cf. A075324, A085801, A279402.
%K nonn,hard,more
%O 1,4
%A _Andrey Zabolotskiy_, Dec 11 2016
|