%I #11 Dec 12 2016 09:13:02
%S 1,2,3,5,4,6,8,12,7,9,10,13,15,17,22,27,11,14,16,20,18,21,23,28,26,30,
%T 32,36,41,45,50,58,19,24,25,29,31,33,38,43,34,37,39,44,42,48,53,59,49,
%U 55,56,61,63,65,70,75,79,84,86,92,97,103,112,121,35,40,46,51,47,52,54,60,57,62,64,68,73,77,82,90,66,69,71,76,74,80
%N a(0) = 1, a(2n) = A005187(a(n)), a(2n+1) = A055938(a(n)).
%C Note the indexing: the domain starts from 0, while the range excludes zero.
%C This sequence can be represented as a binary tree. Each left hand child is produced as A005187(n), and each right hand child as A055938(n), when the parent node contains n:
%C 1
%C |
%C ...................2...................
%C 3 5
%C 4......../ \........6 8......../ \........12
%C / \ / \ / \ / \
%C / \ / \ / \ / \
%C / \ / \ / \ / \
%C 7 9 10 13 15 17 22 27
%C 11 14 16 20 18 21 23 28 26 30 32 36 41 45 50 58
%C etc.
%H Antti Karttunen, <a href="/A279344/b279344.txt">Table of n, a(n) for n = 0..8192</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F a(0) = 1, after which, a(2n) = A005187(a(n)), a(2n+1) = A055938(a(n)).
%F As a composition of other permutations:
%F a(n) = A279342(A054429(n)).
%F a(n) = A279347(A279342(n)).
%F a(n) = A279339(A005940(1+n)).
%o (Scheme) (definec (A279344 n) (cond ((zero? n) 1) ((even? n) (A005187 (A279344 (/ n 2)))) (else (A055938 (A279344 (/ (- n 1) 2))))))
%Y Inverse: A279343.
%Y Left edge: A256994.
%Y Cf. A005187, A055938.
%Y Related or similar permutations: A005940, A054429, A233276, A256997, A279339, A279342, A279347.
%K nonn,tabf
%O 0,2
%A _Antti Karttunen_, Dec 10 2016