login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279195 Numbers of the form {(11*h+p)*11^(2k+1)-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^2k-1 | h,k in N and q in {2,6,7,8,10} }. 4

%I

%S 1,5,6,7,9,10,12,16,17,18,20,23,27,28,29,31,32,34,38,39,40,42,43,45,

%T 49,50,51,53,54,56,60,61,62,64,67,71,72,73,75,78,82,83,84,86,89,93,94,

%U 95,97,98,100,104,105,106,108,111,115,116,117,119,122,126,127,128,130,131

%N Numbers of the form {(11*h+p)*11^(2k+1)-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^2k-1 | h,k in N and q in {2,6,7,8,10} }.

%C The sequence K related to the Apwenian power series F_{11}(x).

%H Ray Chandler, <a href="/A279195/b279195.txt">Table of n, a(n) for n = 1..10000</a>

%H Hao Fu, G.-N. Han, <a href="https://arxiv.org/abs/1601.04370">Computer assisted proof for Apwenian sequences related to Hankel determinants</a>, arXiv preprint arXiv:1601.04370 [math.NT], 2016. See sequence "K" in Section 2.3.

%H Guo-Niu Han, <a href="http://www-irma.u-strasbg.fr/~guoniu/papers/p93apwen/">The program Apwen.py</a>

%t isok[n_]:=Module[{ord=IntegerExponent[n+1,11],pq={{2,6,7,8,10},{1,3,4,5,9}}},MemberQ[pq[[Mod[ord,2]+1]],Mod[(n+1)/11^ord,11]]];Select[Range[0,131],isok] (* _Ray Chandler_, Dec 17 2016 *)

%Y Cf. A279000, A279001, A279194.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Dec 15 2016

%E Definition (from p. 5, Definition 2.1 of the arXiv reference) provided by _Arie Groeneveld_, Dec 16 2016

%E More terms from _Ray Chandler_, Dec 17 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 17:24 EDT 2019. Contains 328037 sequences. (Running on oeis4.)