login
T(n,k)=Number of nXk 0..3 arrays with rows and columns in lexicographic nondecreasing order but with exactly two mistakes.
7

%I #4 Nov 23 2016 07:59:51

%S 0,0,0,4,70,4,65,1531,1531,65,456,25402,124564,25402,456,2128,385040,

%T 6207774,6207774,385040,2128,7728,4880813,256173362,1116456061,

%U 256173362,4880813,7728,23607,50476458,9647190761,157222953688,157222953688

%N T(n,k)=Number of nXk 0..3 arrays with rows and columns in lexicographic nondecreasing order but with exactly two mistakes.

%C Table starts

%C .....0.........0.............4.................65....................456

%C .....0........70..........1531..............25402.................385040

%C .....4......1531........124564............6207774..............256173362

%C ....65.....25402.......6207774.........1116456061...........157222953688

%C ...456....385040.....256173362.......157222953688.........81144920762300

%C ..2128...4880813....9647190761.....19154084929099......35461508433808988

%C ..7728..50476458..327443433750...2139517647414832...13763018389926177995

%C .23607.435272199.9777854836324.221564412439675221.4934142560387144138930

%H R. H. Hardin, <a href="/A278553/b278553.txt">Table of n, a(n) for n = 1..97</a>

%F Empirical for column k:

%F k=1: [polynomial of degree 11]

%F k=2: [polynomial of degree 47]

%F k=3: [polynomial of degree 191]

%e Some solutions for n=3 k=4

%e ..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..1..2..1

%e ..0..3..3..2. .0..2..2..0. .1..1..3..1. .1..1..3..2. .0..1..3..0

%e ..1..2..3..2. .1..3..0..3. .0..1..3..0. .0..1..2..2. .0..1..0..2

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_, Nov 23 2016