This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278475 a(n) = floor(phi^7*a(n-1)) for n>0, a(0) = 1, where phi is the golden ratio (A001622). 0
 1, 29, 841, 24417, 708933, 20583473, 597629649, 17351843293, 503801085145, 14627583312497, 424703717147557, 12331035380591649, 358024729754305377, 10395048198255447581, 301814422479162285225, 8763013300093961719105, 254429200125204052139269, 7387209816931011473757905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, the ordinary generating function for the recurrence relation b(n) = floor(phi^k*b(n - 1)) with n>0 and b(0) = 1, is (1 - x)/(1 - (phi^k + (-phi)^(-k))*x + x^2) if k is even, and (1 - x - x^2)/((1 - x)*(1 - (phi^k + (-phi)^(-k))*x - x^2)) if k is odd. LINKS Index entries for linear recurrences with constant coefficients, signature (30,-28,-1). FORMULA G.f.: (1 - x - x^2)/((1 - x)*(1 - 29*x - x^2)). a(n) = 30*a(n-1) - 28*a(n-2) - a(n-3). a(n) = ((-29 - 13*sqrt(5))^(-n)*(-7*(407 + 182*sqrt(5))*2^(n+3) + 13*(1885 + 843*sqrt(5))*(-29 - 13*sqrt(5))^n + 28*(25319 + 11323*sqrt(5))*(-843 - 377*sqrt(5))^n))/(377*(1885 + 843*sqrt(5))). MATHEMATICA RecurrenceTable[{a[0] == 1, a[n] == Floor[GoldenRatio^7 a[n - 1]]}, a, {n, 17}] LinearRecurrence[{30, -28, -1}, {1, 29, 841}, 18] PROG (PARI) Vec( (1 - x - x^2)/((1 - x)*(1 - 29*x - x^2)) + O(x^50) ) \\ G. C. Greubel, Nov 24 2016 CROSSREFS Cf. A001622. Cf. similar sequences with recurrence relation b(n) = floor(phi^k*b(n-1)) for n>0, b(0) = 1: A000012 (k = 1), A001519 (k = 2), A024551 (k = 3), A049685 (k = 4), A214993 (k = 5), A007805 (k = 6), this sequence (k = 7). Sequence in context: A171303 A262337 A009973 * A057687 A049667 A042626 Adjacent sequences:  A278472 A278473 A278474 * A278476 A278477 A278478 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Nov 23 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 13:50 EST 2019. Contains 319271 sequences. (Running on oeis4.)