This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278135 Number of horizontal steps in the valleys of all bargraphs having semiperimeter n (n >=2). 1

%I

%S 0,0,0,0,1,9,51,236,979,3805,14190,51488,183333,644121,2241127,

%T 7741378,26593899,90971184,310159487,1054693058,3578948942,

%U 12124108632,41015411703,138597840864,467913141789,1578497031981,5321685955902,17931990439148,60397664457791,203355625940891

%N Number of horizontal steps in the valleys of all bargraphs having semiperimeter n (n >=2).

%H A. Blecher, C. Brennan, and A. Knopfmacher, <a href="http://dx.doi.org/10.1080/0035919X.2015.1059905">Peaks in bargraphs</a>, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.

%F G.f.: g(z) = 2z^6/(Q(R + (1-3z+z^2)(1-z)^2*Q)), where Q = sqrt((1-z)(1-3z-z^2-z^3)) and R = 1 - 7z + 17z^2 - 18z^3 + 9z^4 - 3z^5 + z^6.

%F a(n) = Sum(k*A278134(n,k), k>=0).

%e a(6) = 1 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only one has a valley; it corresponds to the composition [2,1,2] and its width is 1.

%p Q := sqrt((1-z)*(1-3*z-z^2-z^3)): R := 1-7*z+17*z^2-18*z^3+9*z^4-3*z^5+z^6: g := 2*z^6/(Q*(R+(1-3*z+z^2)*(1-z)^2*Q)): gser := series(g, z = 0, 35): seq(coeff(gser, z, j), j = 2 .. 33);

%Y Cf. A082582, A273719, A273720, A278134

%K nonn

%O 2,6

%A _Emeric Deutsch_, Jan 06 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 16:18 EDT 2019. Contains 328101 sequences. (Running on oeis4.)