%I
%S 71,170,269,368,467,566,665,764,863,962,1061,1160,1259,1358,1457,1556,
%T 1655,1754,1853,1952,2051,2150,2249,2348,2447,2546,2645,2744,2843,
%U 2942,3041,3140,3239,3338,3437,3536,3635,3734,3833,3932,4031,4130,4229,4328,4427,4526
%N a(n) = 99*n + 71.
%C a(n) (n>=1) is the second Zagreb index of the triplelayered naphthalenophane G(n,n,n) having n hexagons in each layer. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The pictorial definition of G(p,q,r) can be viewed in the E. Flapan references.
%C The Mpolynomial of the triple layered naphthalenophane G(p,q,r) is M(G(p,q,r),x,y) = 8*x^2*y^2 + 4*(p + q + r + 2)*x^2*y^3 + (p + q + r  1)*x^3*y^3 (p, q, r>=1).
%D Erica Flapan, When Topology Meets Chemistry, Cambridge Univ. Press, Cambridge, 2000.
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">Mpolynomial and degreebased topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93102.
%H Erica Flapan and Brian Forcum, <a href="https://www.researchgate.net/publication/257591558_Intrinsic_Chirality_of_Multipartite_Graphs">Intrinsic chirality of triplelayered naphthalenophane and related graphs</a>, J. Math. Chemistry, 24, 1998, 379388.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1).
%F G.f.: (71 + 28*x)/(1  x)^2.
%p seq(99*n+71, n = 0..45);
%Y Cf. A278126.
%K nonn,easy
%O 0,1
%A _Emeric Deutsch_, Nov 13 2016
