%I #20 Sep 06 2024 19:39:59
%S 0,1,8,9,24,25,32,33,48,49,56,57,86,87,94,95,110,111,118,119,134,135,
%T 142,143,1260,1261,1268,1269,1284,1285,1292,1293,1308,1309,1316,1317,
%U 1346,1347,1354,1355,1370,1371,1378,1379,1394,1395,1402,1403,1890,1891,1898
%N Sums of finite subsequences of A280708.
%H Robert Israel, <a href="/A278076/b278076.txt">Table of n, a(n) for n = 1..768</a>
%p S:= {0}: # adapted from A280708
%p x:= 1:
%p while x < 10^4 do
%p if ormap(s -> isprime(s+x), S)
%p then x:= x+1
%p else S:= S union map(`+`, S, x)
%p fi
%p od:
%p sort(convert(S,list));
%t S = {0}; x = 1;
%t While[x < 2000, If[AnyTrue[S, PrimeQ[#+x]&], x++, S = S ~Union~ (S+x)]];
%t S (* _Jean-François Alcover_, Apr 29 2019 *)
%o (SageMath)
%o def A278076(bound):
%o x, y, S = 1, 1, {0}
%o while x < bound:
%o if any(is_prime(s+x) for s in S):
%o x += 1
%o else:
%o y = x
%o S = S.union(s+x for s in S)
%o return [s for s in sorted(S) if s <= y]
%o print(A278076(10^5))
%Y Cf. A280708.
%K nonn
%O 1,3
%A _Robert Israel_ and _Peter Luschny_, Jan 20 2017