login
A277511
E.g.f.: -LambertW(-x)/(1+x).
3
0, 1, 0, 9, 28, 485, 4866, 83587, 1428456, 30190617, 698093830, 18258392471, 523907661036, 16487285529013, 562892775847962, 20749534387671195, 820928954404107856, 34705399650797034929, 1561214366024349903246, 74464277343448593371167, 3753594453131028132576660
OFFSET
0,4
LINKS
FORMULA
For n > 0, a(n) = Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(k-1) * (n-k)!.
a(n) ~ n^(n-1) / (1+exp(-1)).
MATHEMATICA
CoefficientList[Series[-LambertW[-x]/(1+x), {x, 0, 20}], x] * Range[0, 20]!
Flatten[{0, Table[Sum[(-1)^(n-k) * Binomial[n, k] * k^(k-1) * (n-k)!, {k, 1, n}], {n, 1, 20}]}]
PROG
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace(-lambertw(-x)/(1+x)))) \\ G. C. Greubel, Nov 12 2017
CROSSREFS
Sequence in context: A042501 A271185 A306843 * A041154 A024121 A205144
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 18 2016
STATUS
approved