%I
%S 1,0,0,0,1,0,0,1,1,0,1,1,1,1,2,1,2,2,2,2,4,3,3,4,5,4,6,6,7,7,9,8,11,
%T 11,12,13,16,15,18,20,22,22,27,27,31,33,37,38,45,46,51,55,62,63,72,76,
%U 84,89,99,103,116,122,133,142,158,164,181,193,210,222,245,257,281,299,324,343,376,396,429,457,495,522,568,601,649,689
%N Expansion of Product_{k>=1} 1/(1  x^(3*k+1)).
%C Number of partitions of n into parts larger than 1 and congruent to 1 mod 3.
%C More generally, the ordinary generating function for the number of partitions of n into parts larger than 1 and congruent to 1 mod m (for m>0) is Product_{k>=1} 1/(1  x^(m*k+1)).
%H <a href="/index/Par#partN">Index entries for related partitioncounting sequences</a>
%F G.f.: Product_{k>=1} 1/(1  x^(3*k+1)).
%F a(n) ~ Pi^(1/3) * Gamma(1/3) * exp(sqrt(2*n)*Pi/3) / (2^(13/6)*3^(3/2)*n^(7/6)).  _Vaclav Kotesovec_, Oct 06 2016
%e a(14) = 2, because we have [10, 4] and [7, 7].
%t CoefficientList[Series[(1  x)/QPochhammer[x, x^3], {x, 0, 85}], x]
%Y Cf. A016777, A035382, A087897, A117957.
%K nonn
%O 0,15
%A _Ilya Gutkovskiy_, Oct 05 2016
