Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #26 Aug 12 2017 12:07:43
%S 0,0,0,1,0,1,0,2,1,1,0,2,0,1,1,2,0,2,0,2,1,1,0,2,1,1,2,2,0,2,0,3,1,1,
%T 1,2,0,1,1,2,0,2,0,2,2,1,0,3,1,2,1,2,0,2,1,2,1,1,0,2,0,1,2,3,1,2,0,2,
%U 1,2,0,3,0,1,2,2,1,2,0,3,2,1,0,2,1,1,1,2,0,2,1,2,1,1,1,3,0,2,2,2
%N Height of the shortest binary factorization tree of n.
%C Among all possible binary factorization trees of n we choose a tree with minimal height. The choice may not be unique. a(n) gives the height of the chosen tree.
%C To compute the terms A001222 and A001221 could be used.
%C The positions at which numbers (1,2,3) first appear are respectively (4,8,32). The latter sequence can be described by the formula b(n) = 2^(2^(n-1) + 1).
%H Antti Karttunen, <a href="/A276806/b276806.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n^2) = a(n) + 1.
%e a(12) = 2 since 12 cannot be factored in a binary factorization tree of height less than 2, but it can be factored in a tree of height 2, e.g.,
%e 12
%e / \
%e 4 3
%e / \
%e 2 2
%e Similarly, a(16) = 2:
%e 16
%e / \
%e / \
%e 4 4
%e / \ / \
%e 2 2 2 2
%e and a(40) = 2:
%e 40
%e / \
%e / \
%e 4 10
%e / \ / \
%e 2 2 2 5
%e and a(84) = 2:
%e 84
%e / \
%e / \
%e 4 21
%e / \ / \
%e 2 2 3 7
%o (PARI) a(n)=if(n>1,my(b=bigomega(n),c=(2^logint(b,2)!=b));logint(b,2)+c,0) \\ _David A. Corneth_, Oct 01 2016
%o (PARI) A276806(n) = { my(m=0,h); if((1==n)||isprime(n),0,fordiv(n,d,if((d>1)&&(d<n),h = 1+max(A276806(d),A276806(n/d)); if(!m || (h < m),m=h)))); m; }; \\ _Antti Karttunen_, Aug 12 2017
%Y Cf. A001221, A001222, A005171.
%K nonn
%O 1,8
%A _Yuriy Sibirmovsky_, Sep 17 2016