Some Results About Sequence A276710

Hagen von Eitzen

July 30, 2022

Abstract

Using p-adic valuations, membership in OEIS sequence A276710 can be tested with less need for big-integer arithmetic. This can be used to prove a conjecture about the sequence, find a simple description of its complement, and find its natural density.

Clearly, one should try to explore the sequence via much smaller numbers—such as p-adic valuations.

1 Definitions and Notation

We write \mathbb{N} for the set of positive integers, \mathbb{N}_0 for the set of non-negative integers, \mathbb{P} for the set of primes. In this article, the word "number" and all *variables* written as lower-case latin letters (a, b, c, etc.) refer to non-negative integers only (and specifically p will always refer to a prime). Of course, this does not prevent *expressions* such as a-b, $\frac{a}{b}$, or \sqrt{a} from leaving that realm.

Let p be a prime. If n is expressed in base p as

$$n = \sum_{j=0}^{t} a_j p^j$$

with $0 \le a_j < p$, then recall that we define the p-adic valuation

$$v_p(n) := \min \left\{ j \in \mathbb{N}_0 : a_j \neq 0 \right\}$$

(and $v_p(0) = \infty$, but this will not occur below) and the p-adic digit sum

$$s_p(n) := \sum_{j=0}^t a_j.$$

For a number n > 1, let

$$gpf(n) := max \{ p \in \mathbb{P} : p \mid n \}$$

denote the greatest prime factor of n.

Specific to our investigation, we abbreviate

$$f_p(n) := v_p \left(\prod_{k=1}^{n-1} \binom{n}{k} \right)$$

and for convenience,

$$\mathbf{A} := \{ A276710(n) : n \in \mathbb{N} \}.$$

In section 3, we will consider the following sets of low, high, and zero values:

$$\mathbf{L}_{p} := \left\{ n \in \mathbb{N} : f_{p}(n) < (n-1)v_{p}(n) \right\},
\mathbf{H}_{p} := \left\{ n \in \mathbb{N} : f_{p}(n) > nv_{p}(n) + \frac{1}{p-1}s_{p}(n) \right\},
\mathbf{Z}_{p} := \left\{ n \in \mathbb{N} : f_{p}(n) = 0 \right\}.$$

Note that numbers n with $(n-1)v_p(n) < n \le nv_p(n) + \frac{1}{p-1}s_p(n)$ are in neither of these sets. The main task in that section is to show that such n do not exist.

For subsets $\mathbf{X} \subseteq \mathbb{N}$ the natural density is defined as

$$\varrho\left(\mathbf{X}\right) := \lim_{n \to \infty} \frac{\left|\mathbf{X} \cap [1, n]\right|}{n}$$

(if the limit exists). In section 4, we will apply this to the following sets:

$$\mathbf{B}_{r,s}^{(p)} := \{ (c+1)p^r - p^s : 1 \le c
$$\mathbf{B}_{r,s} := \bigcup_{p \in \mathbb{P}} \mathbf{B}_{r,s}^{(p)}$$

$$\mathbf{B}_r := \bigcup_{s=1}^r \mathbf{B}_{r,s}$$

$$\mathbf{B}^{(p)} := \bigcup_{r=1}^\infty \bigcup_{s=1}^r \mathbf{B}_{r,s}^{(p)}$$

$$\mathbf{B} := \bigcup_{r=1}^\infty \mathbf{B}_r.$$$$

2 Basic Calculations

With the notation introduced in section 1, we have $n \in \mathbf{A}$ if and only if n is composite and

$$f_p(n) \ge (n-1)v_p(n) \tag{1}$$

holds for all primes p (it trivially holds when $p \nmid n$). By definition,

$$f_p(n) = v_p \left(\prod_{k=0}^n \binom{n}{k} \right)$$

$$= \sum_{k=0}^n v_p \left(\frac{n!}{k!(n-k)!} \right)$$

$$= (n+1)v_p(n!) - 2\sum_{k=0}^n v_p(k!)$$

$$= (n-1)v_p(n!) - 2\sum_{k=0}^{n-1} v_p(k!). \tag{2}$$

It is well-known that the p-adic valuation of a factorial satisfies the recursion

$$v_p(k!) = |k/p| + v_p(|k/p|!)$$
(3)

and (readily following by induction) the also well-known closed expressions

$$v_p(k!) = \sum_{j=1}^{\infty} \left\lfloor \frac{k}{p^j} \right\rfloor \tag{4}$$

$$=\frac{k-s_p(k)}{p-1}. (5)$$

We see from (3) that for $0 \le r < p$, the value of $v_p((pk+r)!) = k + v_p(k!)$ does not depend on r. Therefore, if n = pm + r with $0 \le r < p$, then

$$\sum_{k=0}^{n-1} v_p(k!) = \sum_{k=0}^{m-1} \sum_{j=0}^{p-1} v_p((pk+j)!) + \sum_{j=0}^{r-1} v_p((pm+j)!)$$

$$= \sum_{k=0}^{m-1} \sum_{j=0}^{p-1} (k + v_p(k!)) + \sum_{j=0}^{r-1} v_p(n!)$$

$$= p \sum_{k=0}^{m-1} (k + v_p(k!)) + rv_p(n!)$$

$$= p \sum_{k=0}^{m-1} v_p(k!) + \frac{pm(m-1)}{2} + rv_p(n!),$$

or,

$$\sum_{k=0}^{n-1} v_p(k!) - p \sum_{k=0}^{m-1} v_p(k!) = \frac{pm(m-1)}{2} + rv_p(n!).$$

By using this with (2),

$$f_{p}(n) - pf_{p}(m) = (n-1)v_{p}(n!) - 2\sum_{k=0}^{n-1} v_{p}(k!) - p(m-1)v_{p}(m!) + 2p\sum_{k=0}^{m-1} v_{p}(k!)$$

$$= (n-1)v_{p}(n!) - p(m-1)v_{p}(m!) - pm(m-1) - 2rv_{p}(n!)$$

$$= (pm - r - 1)v_{p}(n!) - p(m-1)(m + v_{p}(m!))$$

$$= (pm - r - 1)v_{p}(n!) - (pm - p)v_{p}(n!)$$

$$= (p - r - 1)v_{p}(n!), \tag{6}$$

which gives us a nice recursion to compute $f_p(n)$. In the special case r = 0, we use (5) to turn this into

$$f_p(n) = pf_p(\frac{n}{n}) + (p-1)v_p(n!) = pf_p(\frac{n}{n}) + n - s_p(n)$$
 if $p \mid n$. (7)

Lemma 1. If $n = \sum_{j=0}^{t} a_j p^j$ with $a_j \in \{0, ..., p-1\}$, then

$$f_p(n) = \sum_{0 \le i \le k \le j \le t} (p - 1 - a_i)a_j p^k.$$

Proof. Note that

$$\left\lfloor \frac{n}{p^j} \right\rfloor = \sum_{i=0}^{t-j} a_{i+j} p^i$$

so that by (4),

$$v_p(n!) = \sum_{j=1}^t \sum_{k=0}^{t-j} a_{k+j} p^k = \sum_{0 \le k \le j \le t} a_j p^k.$$

With the base case n = 0 being trivial, the claim follows by induction using (6):

$$\begin{split} f_p \Biggl(\sum_{j=0}^t a_j p^j \Biggr) &= p f_p \Biggl(\sum_{j=0}^{t-1} a_{j+1} p^j \Biggr) \\ &= p \sum_{0 \leq i \leq k < j \leq t-1} (p-1-a_{i+1}) a_{j+1} p^k \\ &= \sum_{0 \leq i \leq k < j \leq t-1} (p-1-a_{i+1}) a_{j+1} p^{k+1} + (p-1-a_0) \sum_{0 \leq k < j \leq t} a_j p^k \\ &= \sum_{0 \leq i \leq k < j \leq t-1} (p-1-a_{i+1}) a_{j+1} p^{k+1} + (p-1-a_0) \sum_{0 \leq k < j \leq t} a_j p^k \\ &= \sum_{1 \leq i \leq k < j \leq t} (p-1-a_i) a_j p^k \\ &= \sum_{0 \leq i < k < j \leq t} (p-1-a_i) a_j p^k. \end{split}$$

3 Strengthening Inequality (1)

Lemma 2. Let n be a positive integer. If $n = (c+1)p^t - 1$ for some $t \ge 0$ and $1 \le c < p$, then $f_p(n) = 0$. For any other n, we have

$$f_p(n) \ge \frac{s_p(n)}{p-1} > 0.$$

Proof. Write n in base p as $n = \sum_{j=0}^{t} a_j p^j$ with $0 \le a_i < p$ and $a_t \ne 0$. Then $n = (c+1)p^t - 1$ is equivalent to: $a_i = p - 1$ for all i < t, and $a_t = c$. For such n, all summands in lemma 1 are zero, hence $f_p(n) = 0$.

For any other n, some non-leading p-ary digit is not p-1, so let $r = \min\{i \in \mathbb{N}_0 : a_i < p-1\}$. Then r < t and by taking only the summands with i = k = r in lemma 1, we obtain the (somewhat generous) lower estimate

$$f_p(n) \ge \sum_{j=r+1}^t (p-1-a_r)a_j p^r$$

$$\ge p^r \sum_{j=r+1}^t a_j$$

$$\ge \sum_{j=r+1}^t a_j + (p^r - 1)$$

$$\ge \sum_{j=r+1}^t a_j + (p-1)r$$

$$= s_p(n) - a_r.$$

If p=2, then $a_r=0$ and $f_p(n)\geq s_p(n)$ as desired. And if p>2, then

$$\frac{f_p(n)}{s_p(n)} \ge \frac{s_p(n) - a_r}{s_p(n)} = 1 - \frac{1}{1 + \frac{s_p(n) - a_r}{a_r}} \ge 1 - \frac{1}{1 + \frac{1}{p-2}} = \frac{1}{p-1}.$$

Lemma 3. $p\mathbf{L}_p \subseteq \mathbf{L}_p$ and $p\mathbf{H}_p \subseteq \mathbf{H}_p$.

Proof. Let n = pm, so $v_p(n) = v_p(m) + 1$ and $s_p(n) = s_p(m)$. If $m \in \mathbf{L}_p$, then from (7), we find

$$\begin{split} f_p(n) &= p f_p(m) + n - s_p(n) \\ &< p(m-1) v_p(m) + n - s_p(n) \\ &= n v_p(m) - p v_p(m) + n - s_p(n) \\ &= n v_p(n) - p v_p(m) - s_p(n) \\ &\le n v_p(n) - v_p(m) - 1 \\ &= (n-1) v_p(n). \end{split}$$

Similarly, if $m \in \mathbf{H}_p$, then

$$f_p(n) = pf_p(m) + n - s_p(n)$$

$$> p(mv_p(m) + \frac{1}{p-1}s_p(m)) + n - s_p(n)$$

$$= pmv_p(m) + \frac{p}{p-1}s_p(n) + n - s_p(n)$$

$$= nv_p(n) + \frac{1}{p-1}s_p(n).$$

Lemma 4. $\mathbf{Z}_p = \{ (c+1)p^t - 1 : t \in \mathbb{N}_0, 1 \le c$

Proof. Immediate from lemma 2 and the definition of \mathbf{Z}_p .

Lemma 5. $\mathbf{Z}_p = (p\mathbf{Z}_p + p - 1) \cup \{1, \dots, p - 1\}$. In particular, $\mathbf{Z}_p \cap p\mathbb{N} = \emptyset$.

Proof. Suppose $n \in \mathbf{Z}_p$, so by lemma 4, $n = (c+1)p^t - 1$ with $t \geq 0$ and $1 \leq c < p$. If t > 0, then $n = p \cdot \left((c+1)p^{t-1} - 1 \right) + p - 1 \in p\mathbf{Z}_p + p - 1$. If t = 0, then $n = c \in \{1, \ldots, p-1\}$. Conversely, if $n = (c+1)p^t - 1$ as in lemma 4, then $pn + p - 1 = cp^{t+1} - 1 \in \mathbf{Z}_p$, and if $1 \leq n \leq p - 1$, then $n = (n+1)p^0 - 1 \in \mathbf{Z}_p$, thus showing the first claim. The second claim follows from the first as every $n \in \mathbf{Z}_p$ is $\equiv -1 \pmod{p}$ or < p.

Lemma 6. For fixed p, the sets \mathbf{L}_p , \mathbf{H}_p , \mathbf{Z}_p are disjoint.

Proof. We have $\mathbf{L}_p \cap \mathbf{H}_p = \emptyset$ and $\mathbf{H}_p \cap \mathbf{Z}_p = \emptyset$ immediately from the defining predicates. If $n \in \mathbf{Z}_p$ then $p \nmid n$ by lemma 5, hence $v_p(n) = 0$ and we cannot have $f_p(n) < (n-1)v_p(n)$. Thus also $\mathbf{L}_p \cap \mathbf{Z}_p = \emptyset$.

Consider the finite state automaton \mathcal{M}_p depicted in fig. 1, where an arrow with label \star is understood to stand for several arrows: one arrow with label r for each $r \in \{0, \ldots, p-1\}$ for which there is not already an arrow with explicit label r and same source node.

Lemma 7. In the finite state automaton \mathcal{M}_p , consider an arrow $\mathbf{X} \xrightarrow{r} \mathbf{Y}$ with label r from a node with label \mathbf{X} to a node with label \mathbf{Y} . Then for every $m \in \mathbf{X}$, we have $pm + r \in \mathbf{Y}$.

Proof. Let n = pm + r with $0 \le r \le p - 1$. We distinguish cases guided by the nodes and arrows in fig. 1.

- m = 0: The cases r = 0 and r = 1 are clear. For $r \ge 2$, we have $n \in \mathbf{Z}_p$ by lemma 5.
- m = 1: The case r = 0 is clear. As $1 \in \mathbf{Z}_p$, lemma 5 implies that $n \in \mathbf{Z}_p$ if r = p 1 and $n \notin \mathbf{Z}_p$ for $1 \le r . In the latter case, <math>f_p(n) > 0$ by lemma 2, but $v_p(n) = 0$, so $n \in \mathbf{H}_p$.

Figure 1: Finite state automaton \mathcal{M}_p used in the proof of lemma 7.

• m = p: By lemma 5, $n \notin \mathbb{Z}_p$. For every r > 0, we have $v_p(n) = 0$ and so by lemma 2 must have $n \in \mathbb{H}_p$. If r = 0, then by (7),

$$f_p(n) = f_p(p^2) = pf_p(p) + p^2 - s_p(p^2)$$

= $p(p-1) + p^2 - 1 = 2p^2 - p - 1 < (p^2 - 1)v_p(p^2)$

and so $n \in \mathbf{L}_p$.

- $m \in \mathbf{X}$ where $\mathbf{X} = \mathbf{L}_p$ or $\mathbf{X} = \mathbf{H}_p$: If r = 0, then $n \in \mathbf{X}$ by lemma 3. For other r, note that $m \notin \mathbf{Z}_p$ by lemma 6, hence $n \in \mathbf{H}_p$ by lemma 5.
- $m \in \mathbf{Z}_p \setminus \{1\}$: If r = p 1, then $n \in \mathbf{Z}_p$ by lemma 5. For any other non-zero r, we have $n \in \mathbf{H}_p$ by lemma 5 and lemma 2. By lemma 4, $v_p(m) = 0$ and $m = (c+1)p^t 1$ where either $s_p(m) \ge p 1$, or t = 0 and $s_p(m) = m > 1$. At any rate, $s_p(m) > 1$. Thus for r = 0, we have $v_p(n) = 1$ and $s_p(n) > 1$, so from (7), we obtain $f_p(n) = n s_p(n) < n 1$ and thus $n \in \mathbf{L}_p$.

Theorem 1. For every prime p, we have $\mathbb{N} = \mathbf{L}_p \sqcup \mathbf{H}_p \sqcup \mathbf{Z}_p \sqcup \{p\}$.

Proof. Disjointness follows from lemma 6 and $f_p(p) = (p-1) = (p-1)v_p(p)$. If we feed the base p expansion of $n \in \mathbb{N}$ from highest to lowest place as input into the finite state automaton \mathcal{M}_p , then by induction using lemma 7, we end up in a state labeled with a set having n as element. As $1 \in \mathbf{Z}_p$, we see that n is in $\mathbf{L}_p \cup \mathbf{H}_p \cup \mathbf{Z}_p \cup \{p\}$.

Corollary 1. For $n \in \mathbb{N}$, we have $n \in \mathbf{A}$ iff n > 1 and $n \in \mathbf{H}_p$ for all prime divisors p of n.

Proof. Assume $n \in \mathbf{A}$. Then n > 1 and (1) holds for every prime p. For those with $v_p(n) > 0$, this implies $n \notin \mathbf{L}_p$ and $n \notin \mathbf{Z}_p$. As $n \neq p$, theorem 1 implies $n \in \mathbf{H}_p$.

Conversely, $n \in \mathbf{H}_p$ for all primes $p \mid n$ clearly implies (1) for these (and trivially for $p \nmid n$). As $p \notin \mathbf{H}_p$ and $n \neq 1$, n must be composite. Hence $n \in \mathbf{A}$.

Corollary 2.

$$\mathbb{N} = \{1\} \sqcup \mathbf{A} \sqcup \bigcup_{p \in \mathbb{P}} (\mathbf{L}_p \cup \{p\}).$$

Proof. By the very definitions and (1), **A** contains only composite numbers and is disjoint from every \mathbf{L}_p . On the other hand, if $n \notin \mathbf{A}$, then either n = 1 or according to corollary 1, there is a prime p with $p \mid n$ and $n \notin \mathbf{H}_p$. By lemma 5, also $n \notin \mathbf{Z}_p$, hence by theorem 1, we have either $n \in \mathbf{L}_p$ or n = p.

Corollary 3. If $n \in \mathbf{A}$, then

$$n^n \mid \prod_{k=0}^n \binom{n}{k}$$
.

Proof. Suppose $n \in \mathbf{A}$. Then by corollary 1, $f_p(n) \geq nv_p(n)$ for all prime divisors p of n (and trivially also for those p not dividing n), which is equivalent to the claim.

4 Finding the Density

As the corresponding out-arrows of nodes $\{p\}$ and \mathbf{L}_p in fig. 1 have the same targets, we can merge these states. After that, we can likewise merge states $\{1\}$ and $\mathbf{Z}_p \setminus \{1\}$. The result \mathcal{M}'_p is shown in fig. 2 and reflects the result of corollary 3 insofar as we are left with one state for $f_p(n) > nv_p(n)$, one for $f_p(n) < nv_p(n)$, and one for $f_p(n) = nv_p(n) = 0$. The node $\mathbf{L}_p \cup \{p\}$ is marked as accepting state and it corresponds to all inputs n with $f_p(n) < nv_p(n)$ (and in particular, $p \mid n$). By corollary 1, input n (or more precisely, its base p expansion) is accepted by \mathcal{M}'_p if p "witnesses" that $n \notin \mathbf{A}$. We read off the regular expression

$$[1 \mid \cdots \mid p-1](p-1)^* 0 0^*$$

for the inputs accepted by \mathcal{M}'_p . Equivalently, n is accepted iff $n \in \mathbf{B}^{(p)}$. We conclude $\mathbf{B}^{(p)} = \mathbf{L}_p \cup \{p\}$.

Note that

$$\bigcup_{p\in\mathbb{P}}\mathbf{B}^{(p)}=\bigcup_{p\in\mathbb{P}}\bigcup_{r=1}^{\infty}\bigcup_{s=1}^{r}\mathbf{B}^{(p)}_{r,s}=\bigcup_{r=1}^{\infty}\bigcup_{s=1}^{r}\bigcup_{p\in\mathbb{P}}\mathbf{B}^{(p)}_{r,s}=\bigcup_{r=1}^{\infty}\bigcup_{s=1}^{r}\mathbf{B}_{r,s}=\bigcup_{r=1}^{\infty}\mathbf{B}_{r}=\mathbf{B}.$$

Hence we can rewrite corollary 2 as

$$\mathbb{N} = \{1\} \sqcup \mathbf{A} \sqcup \mathbf{B}. \tag{8}$$

Figure 2: Finite state automaton \mathcal{M}'_p derived from \mathcal{M}_p .

Lemma 8. $\varrho(\mathbf{B}_1) = \ln 2$.

Proof. Note that

$$\mathbf{B}_1 = \{ cp : p \in \mathbb{P}, 1 \le c 1, \text{gpf}(n) > \sqrt{n} \}$$
 (9)

so that \mathbf{B}_1 is the complement of $\{A048098(n) : n \in \mathbb{N}\}$. The latter is known to have density $1 - \ln 2$, cf. [OEIS, sequence A048098 = Numbers k that are \sqrt{k} -smooth: if $p \mid k$ then $p^2 \leq k$ when p is prime] and [Ram, p. 1125].

Lemma 9. If $r \geq 2$ and $1 \leq s \leq r$, then $\varrho(\mathbf{B}_{r,s}) = 0$.

Proof. Given $r \geq 2$ and $1 \leq s \leq r$, define the map

$$g \colon \mathbf{B}_1 \to \mathbb{N}$$

 $n \mapsto n \operatorname{gpf}(n)^{r-1} + \operatorname{gpf}(n)^r - \operatorname{gpf}(n)^s$

In other words, if $1 \le c , then <math>g(cp) = (c+1)p^r - p^s$, so the image of g is clearly $\mathbf{B}_{r,s}$. By (9), we have

$$g(n) \ge n \operatorname{gpf}(n)^{r-1} > n^{\frac{r+1}{2}} \ge n^{\frac{3}{2}}.$$

From this,

$$\frac{\left|\mathbf{B}_{r,s}\cap[1,n]\right|}{n} \le \frac{\left|\mathbf{B}_{1}\cap[1,n^{\frac{2}{3}}]\right|}{n} \le n^{-\frac{1}{3}}$$

and so $\varrho(\mathbf{B}_{r,s}) = 0$.

Lemma 10. $\varrho(\bigcup_{r=3}^{\infty} \mathbf{B}_r) = 0.$

Proof. By the Prime Number Theorem (or even an extremely weak form of it), there exists a number h such that the prime counting function satisfies

$$\pi(x) < \frac{hx}{\ln x}$$

for all $x \geq 2$.

Let $r \geq 3$ and $1 \leq s \leq r$. We want to estimate $|\mathbf{B}_{r,s} \cap [1,n]|$ for $n \gg 0$. As $(c+1)p^r - p^s \geq p^r \geq 2^r$, we need only consider $r \leq \log_2 n$, and for such r, we need only consider primes $p \leq \sqrt[r]{n}$. Thus there are

$$\pi(\sqrt[r]{n}) < \frac{h\sqrt[r]{n}}{\ln\sqrt[r]{n}} = \frac{hr\sqrt[r]{n}}{\ln n}$$

possible choices for p, and then $p \leq \sqrt[r]{n}$ choices for c to form $(c+1)p^r - p^s$. We conclude

$$\left|\mathbf{B}_{r,s}\cap[1,n]\right|<\frac{hr\sqrt[r]{n}}{\ln n}\cdot\sqrt[r]{n}=\frac{hrn^{\frac{2}{r}}}{\ln n}\leq\frac{hrn^{\frac{2}{3}}}{\ln n}.$$

By summing over $1 \le s \le r$,

$$\left| \mathbf{B}_r \cap [1, n] \right| < \frac{hr^2 n^{\frac{2}{3}}}{\ln n}.$$

By summing over $3 \le r \le \log_2 n$,

$$\left| \bigcup_{r=3}^{\infty} \mathbf{B}_r \cap [1, n] \right| < \frac{hn^{\frac{2}{3}}}{\ln n} \cdot \sum_{r=1}^{\lfloor \log_2 n \rfloor} r^2 = O(n^{\frac{2}{3}} \ln^2 n)$$

and the claim follows.

Theorem 2. $\varrho(\mathbf{B}) = \ln 2$ and $\varrho(\mathbf{A}) = 1 - \ln 2$.

Proof. As

$$\mathbf{B} = \mathbf{B}_1 \cup \mathbf{B}_{2,1} \cup \mathbf{B}_{2,2} \cup \bigcup_{r=3}^{\infty} \mathbf{B}_r,$$

the first claim follows from lemma 8, lemma 9, and lemma 10. The second claim follows form (8). \Box

References

- [OEIS] N. J. A. SLOANE, Ed. (2008), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
- [Ram] V. RAMASWAMI (1949). On the number of positive integers less than x and free of prime divisors greater than x^c . Bull. Amer. Math. Soc. 55 (12), 1122–1127. https://doi.org/10.1090/S0002-9904-1949-09337-0