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Abstract

Using p-adic valuations, membership in OEIS sequence A276710 can
be tested with less need for big-integer arithmetic. This can be used to
prove a conjecture about the sequence, find a simple description of its
complement, and find its natural density.

The sequence [OEIS, sequence A276710 = Composite numbers m such that∏m
k=0

(
n
k

)
is divisible by mm−1] is defined in terms of a divisibility condition

among two rapidly growing sequences, namely [OEIS, sequence A001142 =∏n
k=1 k

2k−1−n] and [OEIS, sequence A000169 = Number of labeled rooted trees
with n nodes: nn−1]. For example, the fact that 36 occurs (as first entry) in
A276710 is a consequence of A001142(36) = 86,647,553,659,528,728,386,865,966,
899,245,661,096,760,113,846,435,205,421,585,685,014,989,365,916,210,134,167,
792,444,618,029,727,631,597,023,317,222,609,765,010,953,506,205,837,870,873,
477,303,408,717,593,918,746,140,769,619,826,402,897,127,023,799,084,181,990,
301,478,751,771,142,735,790,080,000,000,000,000,000,000,000,000,000,000,000
being a multiple of A000169(36) = 2,955,204,414,547,681,244,658,707,659,790,
455,381,671,329,323,051,646,976.

Clearly, one should try to explore the sequence via much smaller numbers —
such as p-adic valuations.

1 Definitions and Notation

We write N for the set of positive integers, N0 for the set of non-negative integers,
P for the set of primes. In this article, the word “number” and all variables
written as lower-case latin letters (a, b, c, etc.) refer to non-negative integers
only (and specifically p will always refer to a prime). Of course, this does not
prevent expressions such as a− b, a

b , or
√
a from leaving that realm.

Let p be a prime. If n is expressed in base p as

n =

t∑
j=0

ajp
j

with 0 ≤ aj < p, then recall that we define the p-adic valuation

vp(n) := min { j ∈ N0 : aj 6= 0 }
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(and vp(0) =∞, but this will not occur below) and the p-adic digit sum

sp(n) :=

t∑
j=0

aj .

For a number n > 1, let

gpf(n) := max { p ∈ P : p | n }

denote the greatest prime factor of n.
Specific to our investigation, we abbreviate

fp(n) := vp

(
n−1∏
k=1

(
n

k

))

and for convenience,

A := {A276710(n) : n ∈ N } .

In section 3, we will consider the following sets of low, high, and zero values:

Lp := {n ∈ N : fp(n) < (n− 1)vp(n) } ,
Hp := {n ∈ N : fp(n) > nvp(n) + 1

p−1sp(n) } ,
Zp := {n ∈ N : fp(n) = 0 } .

Note that numbers n with (n− 1)vp(n) < n ≤ nvp(n) + 1
p−1sp(n) are in neither

of these sets. The main task in that section is to show that such n do not exist.
For subsets X ⊆ N the natural density is defined as

% (X) := lim
n→∞

∣∣X ∩ [1, n]
∣∣

n

(if the limit exists). In section 4, we will apply this to the following sets:

B(p)
r,s := { (c+ 1)pr − ps : 1 ≤ c < p }

Br,s :=
⋃
p∈P

B(p)
r,s

Br :=

r⋃
s=1

Br,s

B(p) :=

∞⋃
r=1

r⋃
s=1

B(p)
r,s

B :=

∞⋃
r=1

Br.
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2 Basic Calculations

With the notation introduced in section 1, we have n ∈ A if and only if n is
composite and

fp(n) ≥ (n− 1)vp(n) (1)

holds for all primes p (it trivially holds when p - n).
By definition,

fp(n) = vp

(
n∏

k=0

(
n

k

))

=

n∑
k=0

vp

(
n!

k!(n− k)!

)

= (n+ 1)vp(n!)− 2

n∑
k=0

vp(k!)

= (n− 1)vp(n!)− 2

n−1∑
k=0

vp(k!). (2)

It is well-known that the p-adic valuation of a factorial satisfies the recursion

vp(k!) = bk/pc+ vp(bk/pc!) (3)

and (readily following by induction) the also well-known closed expressions

vp(k!) =

∞∑
j=1

⌊
k

pj

⌋
(4)

=
k − sp(k)

p− 1
. (5)

We see from (3) that for 0 ≤ r < p, the value of vp
(
(pk + r)!

)
= k + vp(k!)

does not depend on r. Therefore, if n = pm+ r with 0 ≤ r < p, then

n−1∑
k=0

vp(k!) =

m−1∑
k=0

p−1∑
j=0

vp
(
(pk + j)!

)
+

r−1∑
j=0

vp
(
(pm+ j)!

)
=

m−1∑
k=0

p−1∑
j=0

(
k + vp(k!)

)
+

r−1∑
j=0

vp(n!)

= p

m−1∑
k=0

(
k + vp(k!)

)
+ rvp(n!)

= p

m−1∑
k=0

vp(k!) +
pm(m− 1)

2
+ rvp(n!),
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or,
n−1∑
k=0

vp(k!)− p
m−1∑
k=0

vp(k!) =
pm(m− 1)

2
+ rvp(n!).

By using this with (2),

fp(n)− pfp(m) = (n− 1)vp(n!)− 2

n−1∑
k=0

vp(k!)− p(m− 1)vp(m!) + 2p

m−1∑
k=0

vp(k!)

= (n− 1)vp(n!)− p(m− 1)vp(m!)− pm(m− 1)− 2rvp(n!)

= (pm− r − 1)vp(n!)− p(m− 1)(m+ vp(m!))

= (pm− r − 1)vp(n!)− (pm− p)vp(n!)

= (p− r − 1)vp(n!), (6)

which gives us a nice recursion to compute fp(n). In the special case r = 0, we
use (5) to turn this into

fp(n) = pfp(n
p ) + (p− 1)vp(n!) = pfp(n

p ) + n− sp(n) if p | n. (7)

Lemma 1. If n =
∑t

j=0 ajp
j with aj ∈ {0, . . . , p− 1}, then

fp(n) =
∑

0≤i≤k<j≤t

(p− 1− ai)ajpk.

Proof. Note that ⌊
n

pj

⌋
=

t−j∑
i=0

ai+jp
i

so that by (4),

vp(n!) =

t∑
j=1

t−j∑
k=0

ak+jp
k =

∑
0≤k<j≤t

ajp
k.

With the base case n = 0 being trivial, the claim follows by induction using (6):

fp

(
t∑

j=0

ajp
j

)
= pfp

(
t−1∑
j=0

aj+1p
j

)
+ (p− 1− a0)

∑
0≤k<j≤t

ajp
k

= p
∑

0≤i≤k<j≤t−1

(p− 1− ai+1)aj+1p
k + (p− 1− a0)

∑
0≤k<j≤t

ajp
k

=
∑

0≤i≤k<j≤t−1

(p− 1− ai+1)aj+1p
k+1 + (p− 1− a0)

∑
0≤k<j≤t

ajp
k

=
∑

1≤i≤k<j≤t

(p− 1− ai)ajpk + (p− 1− a0)
∑

0≤k<j≤t

ajp
k

=
∑

0≤i≤k<j≤t

(p− 1− ai)ajpk.
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3 Strengthening Inequality (1)

Lemma 2. Let n be a positive integer. If n = (c+ 1)pt − 1 for some t ≥ 0 and
1 ≤ c < p, then fp(n) = 0. For any other n, we have

fp(n) ≥ sp(n)

p− 1
> 0.

Proof. Write n in base p as n =
∑t

j=0 ajp
j with 0 ≤ ai < p and at 6= 0. Then

n = (c+ 1)pt − 1 is equivalent to: ai = p− 1 for all i < t, and at = c. For such
n, all summands in lemma 1 are zero, hence fp(n) = 0.

For any other n, some non-leading p-ary digit is not p − 1, so let r =
min { i ∈ N0 : ai < p− 1 }. Then r < t and by taking only the summands with
i = k = r in lemma 1, we obtain the (somewhat generous) lower estimate

fp(n) ≥
t∑

j=r+1

(p− 1− ar)ajp
r

≥ pr
t∑

j=r+1

aj

≥
t∑

j=r+1

aj + (pr − 1)

≥
t∑

j=r+1

aj + (p− 1)r

= sp(n)− ar.

If p = 2, then ar = 0 and fp(n) ≥ sp(n) as desired. And if p > 2, then

fp(n)

sp(n)
≥ sp(n)− ar

sp(n)
= 1− 1

1 +
sp(n)−ar

ar

≥ 1− 1

1 + 1
p−2

=
1

p− 1
.

Lemma 3. pLp ⊆ Lp and pHp ⊆ Hp.

Proof. Let n = pm, so vp(n) = vp(m) + 1 and sp(n) = sp(m). If m ∈ Lp, then
from (7), we find

fp(n) = pfp(m) + n− sp(n)

< p(m− 1)vp(m) + n− sp(n)

= nvp(m)− pvp(m) + n− sp(n)

= nvp(n)− pvp(m)− sp(n)

≤ nvp(n)− vp(m)− 1

= (n− 1)vp(n).
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Similarly, if m ∈ Hp, then

fp(n) = pfp(m) + n− sp(n)

> p
(
mvp(m) + 1

p−1sp(m)
)

+ n− sp(n)

= pmvp(m) + p
p−1sp(n) + n− sp(n)

= nvp(n) + 1
p−1sp(n).

Lemma 4. Zp = { (c+ 1)pt − 1 : t ∈ N0, 1 ≤ c < p } .

Proof. Immediate from lemma 2 and the definition of Zp.

Lemma 5. Zp = (pZp + p− 1) ∪ {1, . . . , p− 1}. In particular, Zp ∩ pN = ∅.

Proof. Suppose n ∈ Zp, so by lemma 4, n = (c + 1)pt − 1 with t ≥ 0 and
1 ≤ c < p. If t > 0, then n = p ·

(
(c+ 1)pt−1− 1

)
+ p− 1 ∈ pZp + p− 1. If t = 0,

then n = c ∈ {1, . . . , p− 1}. Conversely, if n = (c+ 1)pt−1 as in lemma 4, then
pn+ p− 1 = cpt+1 − 1 ∈ Zp, and if 1 ≤ n ≤ p− 1, then n = (n+ 1)p0 − 1 ∈ Zp,
thus showing the first claim. The second claim follows from the first as every
n ∈ Zp is ≡ −1 (mod p) or < p.

Lemma 6. For fixed p, the sets Lp, Hp, Zp are disjoint.

Proof. We have Lp ∩Hp = ∅ and Hp ∩ Zp = ∅ immediately from the defining
predicates. If n ∈ Zp then p - n by lemma 5, hence vp(n) = 0 and we cannot
have fp(n) < (n− 1)vp(n). Thus also Lp ∩ Zp = ∅.

Consider the finite state automaton Mp depicted in fig. 1, where an arrow
with label ? is understood to stand for several arrows: one arrow with label r
for each r ∈ {0, . . . , p− 1} for which there is not already an arrow with explicit
label r and same source node.

Lemma 7. In the finite state automatonMp, consider an arrow X
r−→ Y with

label r from a node with label X to a node with label Y. Then for every m ∈ X,
we have pm+ r ∈ Y.

Proof. Let n = pm+ r with 0 ≤ r ≤ p− 1. We distinguish cases guided by the
nodes and arrows in fig. 1.

• m = 0: The cases r = 0 and r = 1 are clear. For r ≥ 2, we have n ∈ Zp

by lemma 5.

• m = 1: The case r = 0 is clear. As 1 ∈ Zp, lemma 5 implies that n ∈ Zp

if r = p− 1 and n /∈ Zp for 1 ≤ r < p− 1. In the latter case, fp(n) > 0 by
lemma 2, but vp(n) = 0, so n ∈ Hp.
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Hp

Zp\{1} Lp

{1} {p}

{0}

0

1

?

0
p
−

1

?

0

?

0

??

p− 1

0

?

Figure 1: Finite state automaton Mp used in the proof of lemma 7.

• m = p: By lemma 5, n /∈ Zp. For every r > 0, we have vp(n) = 0 and so
by lemma 2 must have n ∈ Hp. If r = 0, then by (7),

fp(n) = fp(p2) = pfp(p) + p2 − sp(p2)

= p(p− 1) + p2 − 1 = 2p2 − p− 1 < (p2 − 1)vp(p2)

and so n ∈ Lp.

• m ∈ X where X = Lp or X = Hp: If r = 0, then n ∈ X by lemma 3. For
other r, note that m /∈ Zp by lemma 6, hence n ∈ Hp by lemma 5.

• m ∈ Zp \ {1}: If r = p − 1, then n ∈ Zp by lemma 5. For any other
non-zero r, we have n ∈ Hp by lemma 5 and lemma 2. By lemma 4,
vp(m) = 0 and m = (c + 1)pt − 1 where either sp(m) ≥ p − 1, or t = 0
and sp(m) = m > 1. At any rate, sp(m) > 1. Thus for r = 0, we have
vp(n) = 1 and sp(n) > 1, so from (7), we obtain fp(n) = n−sp(n) < n−1
and thus n ∈ Lp.

Theorem 1. For every prime p, we have N = Lp tHp t Zp t {p}.

Proof. Disjointness follows from lemma 6 and fp(p) = (p − 1) = (p − 1)vp(p).
If we feed the base p expansion of n ∈ N from highest to lowest place as input
into the finite state automaton Mp, then by induction using lemma 7, we end
up in a state labeled with a set having n as element. As 1 ∈ Zp, we see that n
is in Lp ∪Hp ∪ Zp ∪ {p}.

Corollary 1. For n ∈ N, we have n ∈ A iff n > 1 and n ∈ Hp for all prime
divisors p of n.

7



Proof. Assume n ∈ A. Then n > 1 and (1) holds for every prime p. For those
with vp(n) > 0, this implies n /∈ Lp and n /∈ Zp. As n 6= p, theorem 1 implies
n ∈ Hp.

Conversely, n ∈ Hp for all primes p | n clearly implies (1) for these (and
trivially for p - n). As p /∈ Hp and n 6= 1, n must be composite. Hence
n ∈ A.

Corollary 2.

N = {1} tA t
⋃
p∈P

(Lp ∪ {p}) .

Proof. By the very definitions and (1), A contains only composite numbers and
is disjoint from every Lp. On the other hand, if n /∈ A, then either n = 1 or
according to corollary 1, there is a prime p with p | n and n /∈ Hp. By lemma 5,
also n /∈ Zp, hence by theorem 1, we have either n ∈ Lp or n = p.

Corollary 3. If n ∈ A, then

nn
∣∣ n∏
k=0

(
n

k

)
.

Proof. Suppose n ∈ A. Then by corollary 1, fp(n) ≥ nvp(n) for all prime
divisors p of n (and trivially also for those p not dividing n), which is equivalent
to the claim.

4 Finding the Density

As the corresponding out-arrows of nodes {p} and Lp in fig. 1 have the same
targets, we can merge these states. After that, we can likewise merge states
{1} and Zp \ {1}. The result M′p is shown in fig. 2 and reflects the result of
corollary 3 insofar as we are left with one state for fp(n) > nvp(n), one for
fp(n) < nvp(n), and one for fp(n) = nvp(n) = 0. The node Lp ∪ {p} is marked
as accepting state and it corresponds to all inputs n with fp(n) < nvp(n) (and
in particular, p | n). By corollary 1, input n (or more precisely, its base p
expansion) is accepted by M′p if p “witnesses” that n /∈ A. We read off the
regular expression

[ 1 | · · · | p− 1 ] (p− 1)∗ 0 0∗

for the inputs accepted by M′p. Equivalently, n is accepted iff n ∈ B(p). We

conclude B(p) = Lp ∪ {p}.
Note that⋃
p∈P

B(p) =
⋃
p∈P

∞⋃
r=1

r⋃
s=1

B(p)
r,s =

∞⋃
r=1

r⋃
s=1

⋃
p∈P

B(p)
r,s =

∞⋃
r=1

r⋃
s=1

Br,s =

∞⋃
r=1

Br = B.

Hence we can rewrite corollary 2 as

N = {1} tA tB. (8)
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{0} Zp Lp∪{p} Hp

0

?

p− 1

0

?

0

?

?

Figure 2: Finite state automaton M′p derived from Mp.

Lemma 8. % (B1) = ln 2.

Proof. Note that

B1 = { cp : p ∈ P, 1 ≤ c < p } =
{
n ∈ N : n > 1, gpf(n) >

√
n
}

(9)

so that B1 is the complement of {A048098(n) : n ∈ N }. The latter is known
to have density 1 − ln 2, cf. [OEIS, sequence A048098 = Numbers k that are√
k-smooth: if p | k then p2 ≤ k when p is prime] and [Ram, p. 1125].

Lemma 9. If r ≥ 2 and 1 ≤ s ≤ r, then % (Br,s) = 0.

Proof. Given r ≥ 2 and 1 ≤ s ≤ r, define the map

g : B1 → N
n 7→ n gpf(n)r−1 + gpf(n)r − gpf(n)s

In other words, if 1 ≤ c < p ∈ P, then g(cp) = (c+ 1)pr − ps, so the image of g
is clearly Br,s. By (9), we have

g(n) ≥ n gpf(n)r−1 > n
r+1
2 ≥ n 3

2 .

From this, ∣∣Br,s ∩ [1, n]
∣∣

n
≤
∣∣B1 ∩ [1, n

2
3 ]
∣∣

n
≤ n− 1

3

and so % (Br,s) = 0.

Lemma 10. % (
⋃∞

r=3 Br) = 0.

Proof. By the Prime Number Theorem (or even an extremely weak form of it),
there exists a number h such that the prime counting function satisfies

π(x) <
hx

lnx

for all x ≥ 2.
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Let r ≥ 3 and 1 ≤ s ≤ r. We want to estimate
∣∣Br,s ∩ [1, n]

∣∣ for n� 0. As
(c + 1)pr − ps ≥ pr ≥ 2r, we need only consider r ≤ log2 n, and for such r, we
need only consider primes p ≤ r

√
n. Thus there are

π
(

r
√
n
)
<

h r
√
n

ln r
√
n

=
hr r
√
n

lnn

possible choices for p, and then p ≤ r
√
n choices for c to form (c+ 1)pr − ps. We

conclude ∣∣Br,s ∩ [1, n]
∣∣ < hr r

√
n

lnn
· r
√
n =

hrn
2
r

lnn
≤ hrn

2
3

lnn
.

By summing over 1 ≤ s ≤ r,

∣∣Br ∩ [1, n]
∣∣ < hr2n

2
3

lnn
.

By summing over 3 ≤ r ≤ log2 n,∣∣∣∣∣
∞⋃
r=3

Br ∩ [1, n]

∣∣∣∣∣ < hn
2
3

lnn
·
blog2 nc∑
r=1

r2 = O(n
2
3 ln2 n)

and the claim follows.

Theorem 2. % (B) = ln 2 and % (A) = 1− ln 2.

Proof. As

B = B1 ∪B2,1 ∪B2,2 ∪
∞⋃
r=3

Br,

the first claim follows from lemma 8, lemma 9, and lemma 10. The second claim
follows form (8).
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