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Abstract
Using p-adic valuations, membership in OEIS sequence A276710 can
be tested with less need for big-integer arithmetic. This can be used to
prove a conjecture about the sequence, find a simple description of its
complement, and find its natural density.

The sequence [OEIS, sequence A276710 = Composite numbers m such that
[Tie, () is divisible by m™~!] is defined in terms of a divisibility condition
among two rapidly growing sequences, namely [OEIS, sequence A001142 =
[Ti_, k**~17"] and [OEIS, sequence A000169 = Number of labeled rooted trees
with n nodes: n™~1]. For example, the fact that 36 occurs (as first entry) in
A276710 is a consequence of A001142(36) = 86,647,553,659,528,728,386,865,966,
899,245,661,096,760,113,846,435,205,421,585,685,014,989,365,916,210,134,167,
792,444,618,029,727,631,597,023,317,222,609,765,010,953,506,205,837,870,873,
477,303,408,717,593,918,746,140,769,619,826,402,897,127,023,799,084,181,990,
301,478,751,771,142,735,790,080,000,000,000,000,000,000,000,000,000,000,000
being a multiple of A000169(36) = 2,955,204,414,547,681,244,658,707,659,790,
455,381,671,329,323,051,646,976.

Clearly, one should try to explore the sequence via much smaller numbers —
such as p-adic valuations.

1 Definitions and Notation

We write N for the set of positive integers, Ny for the set of non-negative integers,
P for the set of primes. In this article, the word “number” and all variables
written as lower-case latin letters (a, b, ¢, etc.) refer to non-negative integers
only (and specifically p will always refer to a prime). Of course, this does not
prevent expressions such as a — b, ¢, or Va from leaving that realm.

Let p be a prime. If n is expressed in base p as

t
n=2 ap
j=0
with 0 < a; < p, then recall that we define the p-adic valuation

vp(n) :=min{j e Ny:a; #0}



(and v,(0) = oo, but this will not occur below) and the p-adic digit sum

t

For a number n > 1, let

gpf(n) :=max{peP:p|n}

denote the greatest prime factor of n.
Specific to our investigation, we abbreviate

fy() = (r_[ (Z))

A = {A276710(n) : n e N }.

and for convenience,

In section 3, we will consider the following sets of low, high, and zero values:

Ly :={neN: f,(n) <(n—-1)uy(n)},
Hy, = {n eN: f,(n) > nvy(n) + ;Z5sp(n) },
Z,={neN:f,(n)=0}.

Note that numbers n with (n — 1)v,(n) < n < nv,(n) + pi—lsp(n) are in neither

of these sets. The main task in that section is to show that such n do not exist.
For subsets X C N the natural density is defined as

o(X) = 1im X0 L7

n—00 n

(if the limit exists). In section 4, we will apply this to the following sets:

BP) = {(c+1)p" —p*:1<c<p}

B,.:= | JB®
peP

Br - LTJ Brs
s=1

B® .— D LTJ B?)
r=1s=1 ’

B =JB,
r=1



2 Basic Calculations

With the notation introduced in section 1, we have n € A if and only if n is
composite and
fp(n) = (n = 1)vy(n) (1)
holds for all primes p (it trivially holds when p 1 n).
By definition,

k=0
= (n+1)vp(n!) —2 va(k')
k=0
= (n—Dup(n!) =2 vp(k!). (2)
k=0

It is well-known that the p-adic valuation of a factorial satisfies the recursion

vp(K!) = [k/p] + vp(Lk/p]Y) (3)

and (readily following by induction) the also well-known closed expressions

) =3 M ()

= L
k— sp(k)

== (5)

We see from (3) that for 0 < 7 < p, the value of v, ((pk +7)!) = k + v, (k!)
does not depend on r. Therefore, if n = pm + r with 0 < r < p, then

z_:vp(k!) = Z_: va((pk’ —|—j)!) + z_:vp((pm—kj)!)
k=0 k=0 j=0 §=0
= > > (ke up(k) + D vp(nl)
k=0 j=0 §=0
=p Z (k + vp (kD) + rvp(n!)
k=0
= Pm7 vp(k!) + W + rup(nl),
k=0



or,

—

n—1 m—

Z vp(kl) —p vp(k!) = W + rup(n!).
k=0 k=0
By using this with (2),
fp(n) —pfp(m) = (n — vy (n!) — 22_: vp(k!) — p(m — Dyvy(m!) + QpZ_: vp (k)
k=0 k=0

= (n — L)vp(n!) — p(m — Dvp(m!) — pm(m — 1) — 2rvy(n!)
= (pm — 7 — Dywy(nl) — plm — 1)(m + v, (m!))
= (pm —r —Dup(n!) = (pm — p)up(n!)

= (p—r—Duy(nl), (6)

which gives us a nice recursion to compute f,(n). In the special case r = 0, we
use (5) to turn this into

fo(n) =pfp(2) + (p = Dop(nt) = pfp(3) +n —sp(n)  ifp|n. (7)

Lemma 1. Ifn = Z;:o ajp’ with aj € {0,...,p— 1}, then

fom)= > (p—1—a)azp".

0<i<k<j<t

Proof. Note that

— 1= Ait5P

P i=0
so that by (4),

t t—j
vp(nl) = Z k4P = Z a;p*
j=1k=0 0<k<j<t

With the base case n = 0 being trivial, the claim follows by induction using (6):

t t—1
fp(Zaij) =plp (Z%‘HP’) +(p-1-a)) Y. ap*
j=0

i=o 0<k<j<t
=p >, (-l-am)eup® +(p-1-a) Y ap*
0<i<k<j<t—1 0<ke<j<t

= > (-l-aap +p-1-a) > ap*
0<i<k<j<t—1 0<k<j<t

= Y (p-1-a)apt +p—1—a)) Y ap*
1<i<k<j<t 0<k<j<t

= Z (p—1-— ai)ajpk.
0<i<k<j<t



3 Strengthening Inequality (1)

Lemma 2. Let n be a positive integer. If n = (c+ 1)p* — 1 for some t > 0 and
1 <e<p, then fp(n) =0. For any other n, we have

fp(n) > ;anl) > 0.
Proof. Write n in base p as n = Z;ZO ajpj with 0 < a; < p and a; # 0. Then
n = (c+1)pt — 1 is equivalent to: a; = p— 1 for all i < ¢, and a; = ¢. For such
n, all summands in lemma 1 are zero, hence f,(n) = 0.
For any other n, some non-leading p-ary digit is not p — 1, so let r =
min{i € Ng: a; <p—1}. Then r < ¢ and by taking only the summands with
i =k =r in lemma 1, we obtain the (somewhat generous) lower estimate

If p =2, then a, = 0 and f,(n) > sp(n) as desired. And if p > 2, then

_Sp(n)_arzl_ ‘1 — 11 _
sp(n) sp(n) 1+‘WZI¢ 1+-4 p—1

Lemma 3. pL, C L, and pH, C H,,.

Proof. Let n = pm, so v,(n) = vp(m) + 1 and s,(n) = sp(m). If m € L, then
from (7), we find

fo(n) = pfp(m) +n — sp(n)
<p(m —1)vy(m) +n — sp(n)
= nvy(m) — puy(m) +n — sp(n)
= nup(n) — pvp(m) — sp(n)
< nuy(n) — vp(m) — 1

— (n—1)uy(n).



Similarly, if m € H,,, then

fo(n) = pfp(m) +n —sp(n)
> p(muv,(m) + p—ilsp(m)) +n—sp(n)
— pmuy(m) + L15,(n) + 1 — 5,(n)

= nvy(n) + 7 5,(n).

Lemma 4. Z,={(c+1)p' —1:t €Ny, 1<c<p}.
Proof. Immediate from lemma 2 and the definition of Z,. O
Lemma 5. Z, = (pZ, +p—1)U{1,...,p — 1}. In particular, Z, N pN = (.

Proof. Suppose n € Z,, so by lemma 4, n = (¢ + 1)p' — 1 with ¢ > 0 and
1<c<p Ift>0,thenn=p-((c+1)p" ' =1)+p—1€pZ,+p—1. Ift =0,
thenn =ce€ {1,...,p — 1}. Conversely, if n = (c+1)p' — 1 as in lemma 4, then
pn+p—1=cp'tt—1€Z, andif 1 <n<p-—1,thenn=(n+1)p’—1€Z,,
thus showing the first claim. The second claim follows from the first as every
n € Zy, is = —1 (mod p) or < p. O

Lemma 6. For fized p, the sets L, H,, Z,, are disjoint.

Proof. We have L, NH, = () and H, N Z, = () immediately from the defining
predicates. If n € Z, then p { n by lemma 5, hence v,(n) = 0 and we cannot
have f,(n) < (n — 1)v,(n). Thus also L, NZ, = 0. O

Consider the finite state automaton M, depicted in fig. 1, where an arrow
with label % is understood to stand for several arrows: one arrow with label r
for each r € {0,...,p— 1} for which there is not already an arrow with explicit
label r and same source node.

Lemma 7. In the finite state automaton M,, consider an arrow X 5 Y with
label r from a node with label X to a node with label Y. Then for every m € X,
we have pm+1r €Y.

Proof. Let n =pm + r with 0 <r < p— 1. We distinguish cases guided by the
nodes and arrows in fig. 1.

e m = 0: The cases r =0 and r = 1 are clear. For r > 2, we have n € Z,
by lemma 5.

e m = 1: The case r = 0 is clear. As 1 € Z,, lemma 5 implies that n € Z,
ifr=p—1andn¢Z,for 1 <r<p—1. In the latter case, fp(n) > 0 by
lemma 2, but v,(n) =0, son € Hy,.



Figure 1: Finite state automaton M, used in the proof of lemma 7.

e m =p: By lemma 5, n ¢ Z,. For every r > 0, we have v,(n) = 0 and so
by lemma 2 must have n € H,,. If r = 0, then by (7),

fp(n) = fo(0®) = pfp(p) + 07 — 5,(p?)
=plp—1)+p*—1=2p> —p—1< (p* — 1v,(p?)
and so n € Ly,.

e m € X where X =L, or X =H,: If r =0, then n € X by lemma 3. For
other r, note that m ¢ Z,, by lemma 6, hence n € H,, by lemma 5.

em e Z,\{1}: If r = p—1, then n € Z, by lemma 5. For any other
non-zero r, we have n € H, by lemma 5 and lemma 2. By lemma 4,
vp(m) = 0 and m = (¢4 1)p* — 1 where either s,(m) > p—1, or t =0
and s,(m) = m > 1. At any rate, s,(m) > 1. Thus for r = 0, we have
vp(n) =1 and s,(n) > 1, so from (7), we obtain f,(n) =n—s,(n) <n—1
and thus n € Ly,

U
Theorem 1. For every prime p, we have N =L, UH, UZ, U {p}.

Proof. Disjointness follows from lemma 6 and f,(p) = (p — 1) = (p — 1)vp(p).
If we feed the base p expansion of n € N from highest to lowest place as input
into the finite state automaton M,, then by induction using lemma 7, we end
up in a state labeled with a set having n as element. As 1 € Z,,, we see that n
isin L, UH, UZ, U {p}. O

Corollary 1. Forn € N, we haven € A iff n > 1 and n € H, for all prime
divisors p of n.



Proof. Assume n € A. Then n > 1 and (1) holds for every prime p. For those
with v,(n) > 0, this implies n ¢ L, and n ¢ Z,. As n # p, theorem 1 implies
n c Hp.

Conversely, n € H,, for all primes p | n clearly implies (1) for these (and
trivially for p t n). As p ¢ H, and n # 1, n must be composite. Hence
n € A. O

Corollary 2.

N={1}uAu|J@,u{p}).

peP

Proof. By the very definitions and (1), A contains only composite numbers and
is disjoint from every L,. On the other hand, if n ¢ A, then either n = 1 or
according to corollary 1, there is a prime p with p | n and n ¢ H,,. By lemma 5,
also n ¢ Z,, hence by theorem 1, we have either n € L, or n = p. O

1)

Proof. Suppose n € A. Then by corollary 1, f,(n) > nvy(n) for all prime
divisors p of n (and trivially also for those p not dividing n), which is equivalent
to the claim. O

Corollary 3. Ifn € A, then

4 Finding the Density

As the corresponding out-arrows of nodes {p} and L, in fig. 1 have the same
targets, we can merge these states. After that, we can likewise merge states
{1} and Z, \ {1}. The result M, is shown in fig. 2 and reflects the result of
corollary 3 insofar as we are left with one state for f,(n) > nv,(n), one for
fp(n) < nvp(n), and one for f,(n) = nv,(n) = 0. The node L, U {p} is marked
as accepting state and it corresponds to all inputs n with f,(n) < nv,(n) (and
in particular, p | n). By corollary 1, input n (or more precisely, its base p
expansion) is accepted by M, if p “witnesses” that n ¢ A. We read off the
regular expression
(1] [p=1](p—1)" 00"

for the inputs accepted by M;. Equivalently, n is accepted iff n € B® . We
conclude B =L, U {p}.

Note that

co T co T )
Use-UUUse-0UUse-0Us.-Us -»
peP peEPr=1s=1 r=1s=1peP r=1s=1 r=1

Hence we can rewrite corollary 2 as

N={1}UAUB. (8)



Figure 2: Finite state automaton M, derived from M,,.

Lemma 8. ¢(B;) =1n2.

Proof. Note that
B ={cp:peP,1<c<p}={neN:n>1gpf(n) >n} 9)

so that By is the complement of { A048098(n) : n € N}. The latter is known
to have density 1 — In2, cf. [OEIS, sequence A048098 = Numbers k that are
Vk-smooth: if p | k then p? < k when p is prime] and [Ram, p. 1125]. O

Lemma 9. Ifr>2 and 1 <s<r, then o(B,s) =0.
Proof. Given r > 2 and 1 < s < r, define the map
g: By —» N
n — ngpf(n)" ! + gpf(n)" — gpt(n)*

In other words, if 1 < ¢ < p € P, then g(cp) = (¢ + 1)p" — p®, so the image of g
is clearly B, 5. By (9), we have

g(n) > ngpf(n)r—1 >nz >n2.

From this,
B N [1,n]| _ |B1 N [1,n

n n

and so ¢ (B, ) =0. O

o

Lemma 10. o (J2;B,) =0.

Proof. By the Prime Number Theorem (or even an extremely weak form of it),
there exists a number h such that the prime counting function satisfies

hx

71'(1') < m

for all z > 2.



Let r >3 and 1 < s < r. We want to estimate ’BT,S N [1,n]| forn > 0. As
(c+1)p" —p® > p" > 2", we need only consider r < log, n, and for such r, we
need only consider primes p < {/n. Thus there are

N hy/n hri/n
m(Vn) < Inyn  Inn

possible choices for p, and then p < {/n choices for ¢ to form (¢+ 1)p" — p*. We
conclude

hry/n o= hrn’ < hrn3
Inn

[Brs 0 [1,7]] < Inn =~ Ilnn

By summing over 1 < s <7,

2
hr?n3

Inn

|BT N[Ln]| <

By summing over 3 < r < log, n,

2 |logyn]

(e ]
hn3 2 2 2
UBT.ﬁ[l,n] < o Z r*=0(n3 In“n)
r=3 r=1
and the claim follows. O

Theorem 2. p(B) =In2 and p(A)=1—1n2.
Proof. As

o0
B=B,UB;,UB,,U (B,
r=3

the first claim follows from lemma 8, lemma 9, and lemma 10. The second claim
follows form (8). O
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