%I #28 Mar 09 2017 21:17:44
%S 1,3,4,0,7,2,7,3,8,4,6,9,7,8,7,1,2,5,0,8,0,5,6,9,8,3,7,5,4,0,5,0,8,2,
%T 5,8,2,6,8,0,5,0,6,4,2,7,0,6,7,0,4,9,6,3,5,6,6,7,9,5,8,5,6,0,1,5,6,2,
%U 0,6,5,9,2,1,4,8,3,3,1,9,3,8,2,6,9,9,6
%N Digits of the Leviathan number (10^666)!.
%C The factorial of 10^666, called the Leviathan number by Clifford A. Pickover, is 10^(6.655657055...*10^668), which means that it has approximately 6.656*10^668 decimal digits. The number of trailing zeros is Sum_{k=1..952} floor(10^666/5^k) = 25*10^664 - 143. The last nonzero digits are ...708672.
%D Clifford A. Pickover: Wonders of Numbers. Adventures in Mathematics, Mind, and Meaning. New York: Oxford University Press, 2001, p. 351.
%H Martin Renner, <a href="/A276563/b276563.txt">Table of n, a(n) for n = 1..984</a>
%H Robert P. Munafo, <a href="http://www.mrob.com/pub/math/numbers-22.html#lp2_b668_823"> Notable Properties of Specific Numbers - (10^666)!</a>
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/LeviathanNumber.html">Leviathan number.</a> From MathWorld - A Wolfram Web Resource.
%Y Cf. A051003.
%K nonn,base,fini
%O 1,2
%A _Martin Renner_, Nov 16 2016