%I #14 Dec 30 2018 07:05:42
%S 1,2,100,101,102,200,201,202,1001,1002,10000,10001,10002,10100,10101,
%T 10102,10200,10201,10202,11001,11002,20000,20001,20002,20100,20101,
%U 20102,20200,20201,20202,100001,100002,100100,100101,100102,100200,100201,100202,101001
%N Write A003511(n) in the base {1, 3, 4, 11, 15, 41, 56, 153, 209, ...} (see A002530).
%H Rémy Sigrist, <a href="/A276386/b276386.txt">Table of n, a(n) for n = 1..1000</a>
%H Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, <a href="http://dx.doi.org/10.1016/0012-365X(72)90012-X">Characterization of the set of values f(n)=[n alpha], n=1,2,...</a>, Discrete Math. 2 (1972), no. 4, 335-345. See Table 1.
%o (PARI) A002530(n) = contfracpnqn(vector(n, i, 1+(i>1)*(i%2)))[2, 1]
%o A003511(n) = floor(n*(1+sqrt(3))/2)
%o a(n) = my (v=A003511(n)); for (b=2, oo, if (v<=A002530(b), my (w=0); forstep (p=b, 2, -1, w=10*w + (v\A002530(p)); v=v%A002530(p)); return (w))) \\ _Rémy Sigrist_, Dec 29 2018
%Y Cf. A002530, A003511, A003512, A276387, A276388.
%K nonn,base
%O 1,2
%A _N. J. A. Sloane_, Sep 04 2016
%E More terms from _Rémy Sigrist_, Dec 29 2018