The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275778 Tribonacci-like sequence a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3, with a(0) = 1, a(1) = 2, a(2) = 1. 2

%I #62 May 31 2020 00:53:21

%S 1,2,1,4,7,12,23,42,77,142,261,480,883,1624,2987,5494,10105,18586,

%T 34185,62876,115647,212708,391231,719586,1323525,2434342,4477453,

%U 8235320,15147115,27859888,51242323,94249326,173351537,318843186,586444049

%N Tribonacci-like sequence a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3, with a(0) = 1, a(1) = 2, a(2) = 1.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1).

%F G.f.: (2 x^2-x-1)/(x^3+x^2+x-1).

%F a(n) = A276658(n) + A000073(n).

%t CoefficientList[Series[(-1 - x + 2 x^2)/(-1 + x + x^2 + x^3), {x, 0, 35}], x]

%t RecurrenceTable[{a[n] == a[n - 1] + a[n - 2] + a[n - 3], a[1] == 1, a[2] == 2, a[3] == 1}, a, {n, 35}]

%t LinearRecurrence[{1, 1, 1}, {1, 2, 1}, 35]

%o (PARI) a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;2;1])[1,1] \\ _Charles R Greathouse IV_, Sep 10 2016

%Y Cf. A000073, A276658.

%K nonn,easy

%O 0,2

%A _Nicolas Bègue_, Sep 10 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 17:29 EDT 2024. Contains 372804 sequences. (Running on oeis4.)