login
G.f.: 2 - x/(1+2*x - x^3/(1+2*x^2 - x^5/(1+2*x^3 - x^7/(1+2*x^4 - x^9/(1+2*x^5 - x^11/(1 - ...)))))), a continued fraction.
5

%I #27 Nov 02 2019 08:46:34

%S 2,-1,2,-4,7,-12,22,-41,74,-133,243,-444,806,-1465,2669,-4859,8840,

%T -16087,29282,-53296,96994,-176527,321290,-584755,1064251,-1936952,

%U 3525296,-6416092,11677369,-21252993,38680798,-70399646,128128414,-233195704,424419826,-772450633,1405872057,-2558708924,4656889892,-8475611623,15425744240,-28075093283,51097104306,-92997520459,169256926243,-308050225082,560656176744,-1020402917484,1857149100126,-3380040101304,6151725289638

%N G.f.: 2 - x/(1+2*x - x^3/(1+2*x^2 - x^5/(1+2*x^3 - x^7/(1+2*x^4 - x^9/(1+2*x^5 - x^11/(1 - ...)))))), a continued fraction.

%C a(n) ~ c/r^n, where r = -0.54944587773859960333406076695895194626366374257497442830... and c = 0.6098779103867259353642411483841966048261178594794555738...

%C The g.f. of related triangle A275760 satisfies: G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1.

%H Seiichi Manyama, <a href="/A275762/b275762.txt">Table of n, a(n) for n = 0..3842</a> (terms 0..500 from Paul D. Hanna)

%F Equals the diagonal sums of the irregular triangle A275760.

%F G.f.: 1/F(x) + 1, where F(x) is the g.f. of A275761, the row sums of triangle A275760.

%F G.f.: G(x,1/x), where G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1, where G(x,y) is the g.f. of A275760.

%F G.f.: 2 - x/(1+x + x/(1+x^2 - x^4/(1+x^3 + x^2/(1+x^4 - x^7/(1+x^5 + x^3/(1+x^6 - x^10/(1+x^7 + x^4/(1+x^8 - x^13/(1+x^9 + x^5/(1+x^10 - x^16/(1 + ...)))))))))))), a continued fraction.

%F G.f.: 1/(1 - 1/(1 + (1+x) - x^2/(1 + x*(1+x) - x^4/(1 + x^2*(1+x) - x^6/(1 + x^3*(1+x) - x^8/(1 + x^4*(1+x) - x^10/(1 + x^5*(1+x) - x^12/(1 - ...)))))))), a continued fraction.

%F G.f.: 1/(1 - 1/(1+x + 1/(1+x^2 - x^3/(1+x^3 + x/(1+x^4 - x^6/(1+x^5 + x^2/(1+x^6 - x^9/(1+x^7 + x^3/(1+x^8 - x^12/(1+x^9 + x^4/(1+x^10 - x^15/(1 + ...)))))))))))), a continued fraction.

%F G.f.: 1 + 1/(1 + x/(1 + x/(1 + x^2/(1 + x^2/(1 + x^3/(1 + x^3/(1 + ...))))))) since the odd part of this continued fraction equals the defining continued fraction given above. Cf. A006958 and A227309. - _Peter Bala_, Oct 29 2017

%e G.f.: A(x) = 2 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 + 806*x^12 - 1465*x^13 + 2669*x^14 - 4859*x^15 +...

%t m = 51;

%t 2 + ContinuedFractionK[-x^(2i-1), 1+2x^i, {i, 1, Sqrt[m]//Floor}] + O[x]^m // CoefficientList[#, x]& (* _Jean-François Alcover_, Nov 02 2019 *)

%o (PARI) {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = 1/(A + y*x^(n+1-k))); polcoeff(1 + subst(A,y,1), n)}

%o for(n=0, 50, print1(a(n), ", "))

%Y Cf. A275760, A275761, A006958, A227309, A291940 (column 1).

%K sign

%O 0,1

%A _Paul D. Hanna_, Aug 10 2016