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Abstract

We prove some things about the occurrences of letters in the Tribonacci word.
(Originally written in November 2016; a crucial typo was corrected July 20 2019.)

1 Introduction

The Tribonacci numbers are defined by T0 = 0, T1 = 1, T2 = 1, and Tn = Tn−1+Tn−2+Tn−3

for n ≥ 3.
From the theory of linear recurrences, we know that if α1, α2, α3 are the roots of the cubic

equation X3 −X2 −X − 1 = 0, then there are complex numbers c1, c2, c3 such that

Tn = c1α
n
1 + c2α

n
2 + c3α

n
3 .

Here c1, c2, c3 are the roots of the cubic

44X3 − 2X − 1 = 0.

To fix the ordering, we set

α1
.
= 1.83928675521416113255185256465328660042417874609759224677875

α2
.
= −0.419643377607080566275926282326643300212089373048796123 + 0.6062907292071993692593421970280230029495i

α3
.
= −0.419643377607080566275926282326643300212089373048796123− 0.6062907292071993692593421970280230029495i

and

c1
.
= 0.33622811699494109422536295401433241515792609002045928

c2
.
= −0.16811405849747054711268147700716620− 0.1983241400811494572822790357963192879565i

c3
.
= −0.16811405849747054711268147700716620 + 0.1983241400811494572822790357963192879565i
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More precisely we have

α1 =
1 +

3
√
19− 3

√
33 +

3
√

19 + 3
√
33

3

c1 =
3
√
3267− 561

√
33 +

3
√

3267− 561
√
33

66

while

|α2| = |α3|
.
= 0.737352705760327675201759650508121123340282406926556567235613

satisfies the equation X6 +X4 +X2 − 1 = 0 and has closed form√
(17 + 3

√
33)1/3 − (−17 + 3

√
33)1/3 − 1

3

and

|c2| = |c3|
.
= 0.259990002122039957740959621838206588231251679990783647021

satisfies the equation 1936X6 + 88X4 − 1 = 0 and has closed form√√√√− 1

66
+

3

√
293 + 51

√
33

1149984
+

3

√
293− 51

√
33

1149984
.

2 Tribonacci inequalities

Lemma 1. For n ≥ 0 we have |Tn − c1α
n
1 | ≤ 0.520 · 0.738n.

Proof. We have Tn = c1α
n
1 + c2α

n
2 + c3α

n
3 , so

|Tn − c1α
n
1 | = |c2αn

2 + c3α
n
3 |

≤ |c2||α2|n + |c3||α3|n

= 2|c2||α2|n

≤ 2 · 0.260 · 0.738n

= 0.520 · 0.738n.

Lemma 2. For n ≥ 0 we have

|Tn+1 − α1Tn| ≤ 1.342 · .738n.
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Proof. From Lemma 1, we have

|Tn+1 − c1α
n+1
1 | ≤ 0.520 · 0.738n+1 (1)

and |Tn − c1α
n
1 | ≤ 0.520 · 0.738n. Multiplying this last equation by α1, we get

|α1Tn − c1α
n+1
1 | ≤ 0.957 · 0.738n. (2)

Adding (1) to (2) and applying the triangle inequality, we get

|Tn+1 − α1Tn| ≤ 1.341 · 0.738n.

Similarly, we can prove

Lemma 3. |Tn+2 − α2
1Tn| ≤ 2.043 · 0.738n.

Lemma 4. |Tn+3 − α3
1Tn| ≤ 3.445 · 0.738n.

The proof is left to the reader.

Lemma 5. For all n ≥ 0 we have
(a) −.596 < [(n)T0]T − α1n < .856;
(b) −.883 < [(n)T00]T − α2

1n < 1.460;
(c) −1.461 < [(n)T000]T − α3

1n < 2.298.

Proof. (a) Write n in its canonical Tribonacci representation, say n = Te1 + Te2 + · · · + Tes

for e1 > e2 > · · · > es. Then [(n)T0]T = Te1+1 + Te2+1 + · · ·+ Tei+1, so

[(n)T0]T − α1n =
∑
1≤i≤s

(Tei+1 − α1Tei).

Break up this sum into two pieces, one where 2 ≤ ei ≤ 20, and one where ei > 20. The
latter sum is bounded in absolute value by

∑
j≥21 1.341 · 0.738j ≤ .009. The former sum can

be bounded by actually computing it for all n < T21 = 121415. The minimum is achieved at
n = 65915 and is, rounded down, equal to −0.587. The maximum is achieved at n = 78748
and is, rounded up, equal to 0.847. Hence −0.596 < [(n)T0]T − α1n < 0.856.

In a similar way we can prove (b) and (c). For (b) the maximum of the appropriate
sum is (rounded up) 1.446 and is achieved at n = 78667. The minimum is (rounded down)
−0.869 and is achieved at n = 65996. Since

∑
j≥21 2.043 · 0.738j ≤ .014, the bound follows.

For (c) the maximum of the appropriate sum is (rounded up) 2.275 and is achieved at
n = 78667. The minimum is (rounded down) −1.438 and is achieved at n = 65996. Since∑

j≥21 3.445 · 0.738j ≤ .023, the bound follows.
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3 Tribonacci words

We deal with words over the alphabet {0, 1, 2}. We let ϵ denote the empty word. By |w|
we mean the length of the word w and by |w|e for e ∈ {0, 1, 2} we mean the number of
occurrences of the symbol e in w. For words x, y by xy we mean the concatenation of x with

y. By wn we mean the word

n︷ ︸︸ ︷
ww · · ·w.

Define a sequence of words (ti)i≥0 as follows:

t0 = ϵ

t1 = 2

t2 = 0

t3 = 01

tn = tn−1tn−2tn−3 for n ≥ 4.

Define the morphism φ as follows:

φ(0) = 01

φ(1) = 02

φ(2) = 0

It is now easy to prove the following results by induction:

Lemma 6. (a) For n ≥ 0 we have |tn| = Tn;
(b) For n ≥ 2 and e ∈ {0, 1, 2} we have |tn|e = Tn−e−1;
(c) For n ≥ 0 we have φn(0) = tn+2;
(d) For n ≥ 1 we have φ(tn) = tn+1;
(e) For n ≥ 2 tn is a prefix of T = φω(0).

We let (n)T denote the Tribonacci representation of n and [w]T be the integer whose
Tribonacci representation is given by w.

Lemma 7. The n’th occurrence of 0 in T is at position [(n)T0]T ; the n’th occurrence of 1 in
T is at position [(n)T01]T ; the n’th occurrence of 2 in T is at position [(n)T011]T . In other
words, the n’th occurrence of e in T is at position [(n)T01

e]T , for e ∈ {0, 1, 2}.

Remark 8. Here we index T starting at position 0 and the “first” occurrence is actually the
0’th occurrence. So in this section, we are using 0-origin indexing for both concepts.

Proof. By induction on n. Let e ∈ {0, 1, 2}, and let fe(n) be the position of the n’th
occurrence of e in T.

Base case: the base case is n ≤ 4, and is left to the reader.
For the induction step, assume the claim is true for all n ≤ Tk for some k ≥ 4. We prove

it for Tk < n ≤ Tk+1.
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There are two cases:

(i) Tk < n ≤ Tk + Tk−1;
(ii) Tk + Tk−1 < n ≤ Tk+1.

Using Lemma 6 (a) and (e), write |T[0..Tk+e+2 − 1]| as tk+e+2 = tk+e+1tk+etk+e−1. By
Lemma 6 (b) we have |tk+e+1|e = Tk and |tk+e|e = Tk−1.

Let us consider (i). In this case fe(n) = Tk+e+1 + fe(n− Tk). Now 1 ≤ n− Tk ≤ Tk−1, so
by induction we have fe(n−Tk) = [(n−Tk)T01

e]T . Then fe(n) = Tk+e+1+[(n−Tk)T01
e]T =

[(n)T01
e], as desired.

Now let us consider (ii). In this case fe(n) = Tk+e+1 + Tk+e + fe(n − Tk − Tk−1). Now
1 < n− Tk − Tk−1 ≤ Tk+1 − Tk − Tk−1 = Tk−2, so by induction we have fe(n− Tk − Tk−1) =
[(n − Tk − Tk−1)T01

e]T . Then fe(n) = Tk+e+1 + Tk+e + [(n − Tk − Tk−1)T01
e]T = [(n)T01

e],
as desired.

4 Main results

In this section we change our indexing to starting at 1.
Define A(n) to be the sequence A003144 in the OEIS, i.e., the position (starting with

position 1) of the n’th occurrence of the letter 0 in the Tribonacci word T (where the first
occurrence is n = 1).

Similarly, define B(n) to be sequence A003145 in the OEIS, which is the position of the
n’th occurrence of 1, and C(n) to be sequence A003146, which is the position of the n’th
occurrence of 2.

So, from Lemma 7, we have

A(n) = 1 + [(n− 1)T0]T

B(n) = 1 + [(n− 1)T01]T

C(n) = 1 + [(n− 1)T011]T

We can now state the main result.

Theorem 9. For all n ≥ 1 we have

A(n)− 1 ≤ ⌊α1n⌋ ≤ A(n) + 1

B(n)− 1 ≤ ⌊α2
1n⌋ ≤ B(n) + 2

C(n)− 1 ≤ ⌊α3
1n⌋ ≤ C(n) + 3.

Proof. From Lemma 5 we get −.596 < [(n)T0]T −α1n < .856. Since A(n) = 1+[(n−1)T0]T ,
we get −.596 < A(n)− 1− α1(n− 1) < .856. Hence .404 < A(n)− α1n + α1 < 1.856, and,
subtracting α1, we get −1.436 < A(n)−α1n < .017. Negating, we get −.017 < α1n−A(n) <
1.436. Adding A(n), we get A(n) − .017 < α1n < A(n) + 1.436. Taking floors gives us the
desired result. This proves the first inequality.
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From Lemma 5 we have −.883 < [(n)T00]T − α2
1n < 1.460 for all n ≥ 0. Since B(n) =

1 + [(n − 1)T01]T , we get −.883 < B(n) − 2 − α2
1(n − 1) < 1.460 for all n ≥ 1. Hence

1.117 < B(n)−α2
1n+α2

1 < 3.460, and, subtracting α2
1, we get −2.266 < B(n)−α2

1n < .078.
Negating, we get −.078 < α2

1n− B(n) < 2.266. Adding B(n), we get B(n)− .078 < α2
1n <

B(n) + 2.266. Taking floors gives us the desired result. This proves the second inequality.
From Lemma 5 we get −1.461 < [(n)T000]T − α3

1n < 2.298 for all n ≥ 0. Since C(n) =
1 + [(n − 1)T0]T , we get −1.461 < C(n) − 4 − α3

1(n − 1) < 2.298 for all n ≥ 1. Hence
2.539 < C(n)−α3

1n+α3
1 < 6.298, and, subtracting α3

1, we get −3.684 < C(n)−α3
1n < .076.

Negating, we get −.076 < α3
1n− C(n) < 3.684. Adding C(n), we get C(n)− .076 < α3

1n <
C(n) + 3.684. Taking floors gives us the desired result. This proves the last inequality.

Remark 10. The closeness of the lower bounds suggests that cases where A(n)− 1 = ⌊α1n⌋
should be rather rare, and similarly for B(n) − 1 and C(n) − 1. Indeed, the smallest n for
which A(n)− 1 = ⌊α1n⌋ is n = 12737. Similarly, for B(n)− 1 it is 329 and and for C(n)− 1
it is 2047.
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