Tribonacci Facts

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1
Canada
shallit@cs.uwaterloo.ca

November 3, 2017

Abstract

We prove some things about the occurrences of letters in the Tribonacci word.

1 Introduction

The Tribonacci numbers are defined by $T_{0}=0, T_{1}=1, T_{2}=1$, and $T_{n}=T_{n-1}+T_{n-2}+T_{n-3}$ for $n \geq 3$.

From the theory of linear recurrences, we know that if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the roots of the cubic equation $X^{3}-X^{2}-X-1=0$, then there are complex numbers c_{1}, c_{2}, c_{3} such that

$$
T_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}+c_{3} \alpha_{3}^{n} .
$$

Here c_{1}, c_{2}, c_{3} are the roots of the cubic

$$
44 X^{3}-2 X-1=0
$$

To fix the ordering, we set
$\alpha_{1} \doteq 1.83928675521416113255185256465328660042417874609759224677875$
$\alpha_{2} \doteq-0.419643377607080566275926282326643300212089373048796123+0.60629072920719936925934219$ $\alpha_{3} \doteq-0.419643377607080566275926282326643300212089373048796123-0.60629072920719936925934219$
and
$c_{1} \doteq 0.33622811699494109422536295401433241515792609002045928$
$c_{2} \doteq-0.16811405849747054711268147700716620+0.1983241400811494572822790357963192879565 i$
$c_{3} \doteq-0.16811405849747054711268147700716620-0.1983241400811494572822790357963192879565 i$

More precisely we have

$$
\begin{aligned}
& \alpha_{1}=\frac{1+\sqrt[3]{19-3 \sqrt{33}}+\sqrt[3]{19+3 \sqrt{33}}}{3} \\
& c_{1}=\frac{\sqrt[3]{3267-561 \sqrt{33}}+\sqrt[3]{3267-561 \sqrt{33}}}{66}
\end{aligned}
$$

while

$$
\left|\alpha_{2}\right|=\left|\alpha_{3}\right| \doteq 0.737352705760327675201759650508121123340282406926556567235613
$$

satisfies the equation $X^{6}+X^{4}+X^{2}-1=0$ and has closed form

$$
\sqrt{\frac{(17+3 \sqrt{33})^{1 / 3}-(-17+3 \sqrt{33})^{1 / 3}-1}{3}}
$$

and

$$
\left|c_{2}\right|=\left|c_{3}\right| \doteq 0.259990002122039957740959621838206588231251679990783647021
$$

satisfies the equation $1936 X^{6}+88 X^{4}-1=0$ and has closed form

$$
\sqrt{-\frac{1}{66}+\sqrt[3]{\frac{293+51 \sqrt{33}}{1149984}}+\sqrt[3]{\frac{293-51 \sqrt{33}}{1149984}}}
$$

2 Tribonacci inequalities

Lemma 1. For $n \geq 0$ we have $\left|T_{n}-c_{1} \alpha_{1}^{n}\right| \leq 0.520 \cdot 0.738^{n}$.
Proof. We have $T_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}+c_{3} \alpha_{3}^{n}$, so

$$
\begin{aligned}
\left|T_{n}-c_{1} \alpha_{1}^{n}\right| & =\left|c_{2} \alpha_{2}^{n}+c_{3} \alpha_{3}^{n}\right| \\
& \leq\left|c_{2}\right|\left|\alpha_{2}\right|^{n}+\left|c_{3}\right|\left|\alpha_{3}\right|^{n} \\
& =2\left|c_{2}\right|\left|\alpha_{2}\right|^{n} \\
& \leq 2 \cdot 0.260 \cdot 0.738^{n} \\
& =0.520 \cdot 0.738^{n} .
\end{aligned}
$$

Lemma 2. For $n \geq 0$ we have

$$
\left|T_{n+1}-\alpha_{1} T_{n}\right| \leq 1.342 \cdot .738^{n}
$$

Proof. From Lemma 1, we have

$$
\begin{equation*}
\left|T_{n+1}-c_{1} \alpha_{1}^{n+1}\right| \leq 0.520 \cdot 0.738^{n+1} \tag{1}
\end{equation*}
$$

and $\left|T_{n}-c_{1} \alpha_{1}^{n}\right| \leq 0.520 \cdot 0.738^{n}$. Multiplying this last equation by α_{1}, we get

$$
\begin{equation*}
\left|\alpha_{1} T_{n}-c_{1} \alpha_{1}^{n+1}\right| \leq 0.957 \cdot 0.738^{n} \tag{2}
\end{equation*}
$$

Adding (1) to (2) and applying the triangle inequality, we get

$$
\left|T_{n+1}-\alpha_{1} T_{n}\right| \leq 1.341 \cdot 0.738^{n}
$$

Similarly, we can prove
Lemma 3. $\left|T_{n+2}-\alpha_{1}^{2} T_{n}\right| \leq 2.043 \cdot 0.738^{n}$.
Lemma 4. $\left|T_{n+3}-\alpha_{1}^{3} T_{n}\right| \leq 3.445 \cdot 0.738^{n}$.
The proof is left to the reader.
Lemma 5. For all $n \geq 0$ we have
(a) $-.596<\left[(n)_{T} 0\right]_{T}-\alpha_{1} n<.856$;
(b) $-.883<\left[(n)_{T} 00\right]_{T}-\alpha_{1}^{2} n<1.460$;
(c) $-1.461<\left[(n)_{T} 000\right]_{T}-\alpha_{1}^{3} n<2.298$.

Proof. (a) Write n in its canonical Tribonacci representation, say $n=T_{e_{1}}+T_{e_{2}}+\cdots+T_{e_{s}}$ for $e_{1}>e_{2}>\cdots>e_{s}$. Then $\left[(n)_{T} 0\right]_{T}=T_{e_{1}+1}+T_{e_{2}+1}+\cdots+T_{e_{i}+1}$, so

$$
\left[(n)_{T} 0\right]_{T}-\alpha_{1} n=\sum_{1 \leq i \leq s}\left(T_{e_{i}+1}-\alpha_{1} T_{e_{i}}\right)
$$

Break up this sum into two pieces, one where $2 \leq e_{i} \leq 20$, and one where $e_{i}>20$. The latter sum is bounded in absolute value by $\sum_{j \geq 21} 1.341 \cdot 0.738^{j} \leq .009$. The former sum can be bounded by actually computing it for all $n<T_{21}=121415$. The minimum is achieved at $n=65915$ and is, rounded down, equal to -0.587 . The maximum is achieved at $n=78748$ and is, rounded up, equal to 0.847 . Hence $-0.596<\left[(n)_{T} 0\right]_{T}-\alpha_{1} n<0.856$.

In a similar way we can prove (b) and (c). For (b) the maximum of the appropriate sum is (rounded up) 1.446 and is achieved at $n=78667$. The minimum is (rounded down) -0.869 and is achieved at $n=65996$. Since $\sum_{j \geq 21} 2.043 \cdot 0.738^{j} \leq .014$, the bound follows.

For (c) the maximum of the appropriate sum is (rounded up) 2.275 and is achieved at $n=78667$. The minimum is (rounded down) -1.438 and is achieved at $n=65996$. Since $\sum_{j \geq 21} 3.445 \cdot 0.738^{j} \leq .023$, the bound follows.

3 Tribonacci words

We deal with words over the alphabet $\{0,1,2\}$. We let ϵ denote the empty word. By $|w|$ we mean the length of the word w and by $|w|_{e}$ for $e \in\{0,1,2\}$ we mean the number of occurrences of the symbol e in w. For words x, y by $x y$ we mean the concatenation of x with y. By w^{n} we mean the word $\overbrace{w w \cdots w}^{n}$.

Define a sequence of words $\left(t_{i}\right)_{i \geq 0}$ as follows:

$$
\begin{aligned}
& t_{0}=\epsilon \\
& t_{1}=2 \\
& t_{2}=0 \\
& t_{3}=01 \\
& t_{n}=t_{n-1} t_{n-2} t_{n-3} \text { for } n \geq 4 .
\end{aligned}
$$

Define the morphism φ as follows:

$$
\begin{aligned}
& \varphi(0)=01 \\
& \varphi(1)=02 \\
& \varphi(2)=0
\end{aligned}
$$

It is now easy to prove the following results by induction:
Lemma 6. (a) For $n \geq 0$ we have $\left|t_{n}\right|=T_{n}$;
(b) For $n \geq 2$ and $e \in\{0,1,2\}$ we have $\left|t_{n}\right|_{e}=T_{n-e-1}$;
(c) For $n \geq 0$ we have $\varphi^{n}(0)=t_{n+2}$;
(d) For $n \geq 1$ we have $\varphi\left(t_{n}\right)=t_{n+1}$;
(e) For $n \geq 2 t_{n}$ is a prefix of $\mathbf{T}=\varphi^{\omega}(0)$.

We let $(n)_{T}$ denote the Tribonacci representation of n and $[w]_{T}$ be the integer whose Tribonacci representation is given by w.

Lemma 7. The n'th occurrence of 0 in \mathbf{T} is at position $\left[(n)_{T} 0\right]_{T}$; the n 'th occurrence of 1 in \mathbf{T} is at position $\left[(n)_{T} 01\right]_{T}$; the n 'th occurrence of 2 in \mathbf{T} is at position $\left[(n)_{T} 011\right]_{T}$. In other words, the n 'th occurrence of e in \mathbf{T} is at position $\left[(n)_{T} 01^{e}\right]_{T}$, for $e \in\{0,1,2\}$.

Remark 8. Here we index \mathbf{T} starting at position 0 and the "first" occurrence is actually the 0 'th occurrence. So in this section, we are using 0 -origin indexing for both concepts.

Proof. By induction on n. Let $e \in\{0,1,2\}$, and let $f_{e}(n)$ be the position of the n 'th occurrence of e in \mathbf{T}.

Base case: the base case is $n \leq 4$, and is left to the reader.
For the induction step, assume the claim is true for all $n \leq T_{k}$ for some $k \geq 4$. We prove it for $T_{k}<n \leq T_{k+1}$.

There are two cases:

(i) $T_{k}<n \leq T_{k}+T_{k-1}$;
(ii) $T_{k}+T_{k-1}<n \leq T_{k+1}$.

Using Lemma 6 (a) and (e), write $\left|\mathbf{T}\left[0 . . T_{k+e+2}-1\right]\right|$ as $t_{k+e+2}=t_{k+e+1} t_{k+e} t_{k+e-1}$. By Lemma 6 (b) we have $\left|t_{k+e+1}\right|_{e}=T_{k}$ and $\left|t_{k+e}\right|_{e}=T_{k-1}$.

Let us consider (i). In this case $f_{e}(n)=T_{k+e+1}+f_{e}\left(n-T_{k}\right)$. Now $1 \leq n-T_{k} \leq T_{k-1}$, so by induction we have $f_{e}\left(n-T_{k}\right)=\left[\left(n-T_{k}\right)_{T} 01^{e}\right]_{T}$. Then $f_{e}(n)=T_{k+e+1}+\left[\left(n-T_{k}\right)_{T} 01^{e}\right]_{T}=$ $\left[(n)_{T} 01^{e}\right]$, as desired.

Now let us consider (ii). In this case $f_{e}(n)=T_{k+e+1}+T_{k+e}+f_{e}\left(n-T_{k}-T_{k-1}\right)$. Now $1<n-T_{k}-T_{k-1} \leq T_{k+1}-T_{k}-T_{k-1}=T_{k-2}$, so by induction we have $f_{e}\left(n-T_{k}-T_{k-1}\right)=$ $\left[\left(n-T_{k}-T_{k-1}\right)_{T} 01^{e}\right]_{T}$. Then $f_{e}(n)=T_{k+e+1}+T_{k+e}+\left[\left(n-T_{k}-T_{k-1}\right)_{T} 01^{e}\right]_{T}=\left[(n)_{T} 01^{e}\right]$, as desired.

4 Main results

In this section we change our indexing to starting at 1.
Define $A(n)$ to be the sequence A003144 in the OEIS, i.e., the position (starting with position 1) of the n 'th occurrence of the letter 0 in the Tribonacci word \mathbf{T} (where the first occurrence is $n=1$).

Similarly, define $B(n)$ to be sequence A003145 in the OEIS, which is the position of the n 'th occurrence of 1 , and $C(n)$ to be sequence A003146, which is the position of the n 'th occurrence of 2 .

So, from Lemma 7, we have

$$
\begin{aligned}
& A(n)=1+\left[(n-1)_{T} 0\right]_{T} \\
& B(n)=1+\left[(n-1)_{T} 01\right]_{T} \\
& C(n)=1+\left[(n-1)_{T} 011\right]_{T}
\end{aligned}
$$

We can now state the main result.
Theorem 9. For all $n \geq 1$ we have

$$
\begin{aligned}
& A(n)-1 \leq\left\lfloor\alpha_{1} n\right\rfloor \leq A(n)+1 \\
& B(n)-1 \leq\left\lfloor\alpha_{1}^{2} n\right\rfloor \leq B(n)+2 \\
& C(n)-1 \leq\left\lfloor\alpha_{1}^{3} n\right\rfloor \leq C(n)+3
\end{aligned}
$$

Proof. From Lemma 5 we get $-.596<\left[(n)_{T} 0\right]_{T}-\alpha_{1} n<.856$. Since $A(n)=1+\left[(n-1)_{T} 0\right]_{T}$, we get $-.596<A(n)-1-\alpha_{1}(n-1)<.856$. Hence $.404<A(n)-\alpha_{1} n+\alpha_{1}<1.856$, and, subtracting α_{1}, we get $-1.436<A(n)-\alpha_{1} n<.017$. Negating, we get $-.017<\alpha_{1} n-A(n)<$ 1.436. Adding $A(n)$, we get $A(n)-.017<\alpha_{1} n<A(n)+1.436$. Taking floors gives us the desired result. This proves the first inequality.

From Lemma 5 we have $-.883<\left[(n)_{T} 00\right]_{T}-\alpha_{1}^{2} n<1.460$ for all $n \geq 0$. Since $B(n)=$ $1+\left[(n-1)_{T} 01\right]_{T}$, we get $-.883<B(n)-2-\alpha_{1}^{2}(n-1)<1.460$ for all $n \geq 1$. Hence $1.117<B(n)-\alpha_{1}^{2} n+\alpha_{1}^{2}<3.460$, and, subtracting α_{1}^{2}, we get $-2.266<B(n)-\alpha_{1}^{2} n<.078$. Negating, we get $-.078<\alpha_{1}^{2} n-B(n)<2.266$. Adding $B(n)$, we get $B(n)-.078<\alpha_{1}^{2} n<$ $B(n)+2.266$. Taking floors gives us the desired result. This proves the second inequality.

From Lemma 5 we get $-1.461<\left[(n)_{T} 000\right]_{T}-\alpha_{1}^{3} n<2.298$ for all $n \geq 0$. Since $C(n)=$ $1+\left[(n-1)_{T} 0\right]_{T}$, we get $-1.461<C(n)-4-\alpha_{1}^{3}(n-1)<2.298$ for all $n \geq 1$. Hence $2.539<C(n)-\alpha_{1}^{3} n+\alpha_{1}^{3}<6.298$, and, subtracting α_{1}^{3}, we get $-3.684<C(n)-\alpha_{1}^{3} n<.076$. Negating, we get $-.076<\alpha_{1}^{3} n-C(n)<3.684$. Adding $C(n)$, we get $C(n)-.076<\alpha_{1}^{3} n<$ $C(n)+3.684$. Taking floors gives us the desired result. This proves the last inequality.

Remark 10. The closeness of the lower bounds suggests that cases where $A(n)-1=\left\lfloor\alpha_{1} n\right\rfloor$ should be rather rare, and similarly for $B(n)-1$ and $C(n)-1$. Indeed, the smallest n for which $A(n)-1=\left\lfloor\alpha_{1} n\right\rfloor$ is $n=12737$. Similarly, for $B(n)-1$ it is 329 and and for $C(n)-1$ it is 2047 .

