Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 24 2016 16:11:38
%S 0,0,1,6,58,948,25992,1179016,87713040,10646068080,2101395344400,
%T 673242645670320,349671381118477440,294206779308703578240,
%U 400822226102433353285760,883965927408694948620295680,3155212287401150653204012531200
%N a(n) = ([n]_phi! - [n]_{1-phi}!)/sqrt(5), where [n]_q! is the q-factorial, phi = (1+sqrt(5))/2.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a>, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>.
%F [n]_phi! = (A274983(n) + a(n)*sqrt(5))/2.
%F [n]_{1-phi}! = (A274983(n) - a(n)*sqrt(5))/2.
%F a(n) ~ c * phi^(n*(n+3)/2) / sqrt(5), where c = QPochhammer(phi-1) = A276987 = 0.1208019218617061294237231569887920563043992516794... . - _Vaclav Kotesovec_, Sep 24 2016
%e For n = 3, [3]_phi! = 1060 + 474*sqrt(5), so A274983(5) = 2*1060 = 2120 and a(5) = 2*474 = 948.
%t Round@Table[(QFactorial[n, GoldenRatio] - QFactorial[n, 1 - GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
%Y Cf. A274983, A005329, A275706, A276474, A276688, A276987.
%K nonn
%O 0,4
%A _Vladimir Reshetnikov_, Sep 23 2016