login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x^2*A(x)^3).
4

%I #20 Jan 28 2024 07:26:28

%S 1,3,13,70,429,2842,19794,142758,1056655,7980280,61251261,476387379,

%T 3746317414,29738316330,237968639936,1917578268288,15546796822656,

%U 126728260011920,1037987924978125,8538459191677170,70509828893263474,584310452973463242,4857624566855734836,40501472981905806550,338594135314564168494,2837641019938074131463,23835438376045780734390,200633658871150345742269,1692132786239339256115050,14297391426538004065333910,121009206594941545408186768

%N G.f. satisfies A(x) = (1 + x*A(x))^3 * (1 + x^2*A(x)^3).

%H Seiichi Manyama, <a href="/A274379/b274379.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f. satisfies: A(x) = (1/x) * Series_Reversion( x*(1 - x^2*(1+x)^3) / (1+x)^3 ).

%F G.f. satisfies: A( x*(1 - x^2*(1+x)^3)/(1+x)^3 ) = (1+x)^3/(1 - x^2*(1+x)^3).

%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(3*n+3*k+3,n-2*k). - _Seiichi Manyama_, Jan 27 2024

%e G.f.: A(x) = 1 + 3*x + 13*x^2 + 70*x^3 + 429*x^4 + 2842*x^5 + 19794*x^6 + 142758*x^7 + 1056655*x^8 + 7980280*x^9 + ...

%e such that A(x) = 1 + 3*x*A(x) + x^2*(3*A(x)^2 + A(x)^3) + x^3*(A(x)^3 + 3*A(x)^4) + 3*x^4*A(x)^5 + x^5*A(x)^6.

%o (PARI) {a(n) = my(A=1); for(i=1, n, A = (1 + x*A)^3 * (1 + x^2*A^3) + x*O(x^n) ); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x^2*(1+x)^3)/(1+x +x^2*O(x^n) )^3 ); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A181734, A274378.

%Y Cf. A274735, A369600.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 04 2016