%I #54 Aug 06 2023 15:42:44
%S 15,24,18,15,24,18,15,24,18,15,24,18,15,24,18,15,24,18,15,24,18,15,24,
%T 18,15,24,18,15,24,18,15,24,18,15,24,18,15,24,18,15,24,18,15,24,18,15,
%U 24,18,15,24,18,15,24,18,15,24,18,15,24,18
%N The period 3 sequence of the iterated sum of deficient divisors function (A187793) starting at 15.
%C This sequence is generated in a similar way to aliquot sequences or sociable chains, which are generated by iterating the sum of proper divisors function (A001065). It appears to be the only one of period (order, length) 3 that A187793 generates under iteration.
%C If sigma(N) is the sum of positive divisors of N, then:
%C a(n+1) = sigma(a(n)) if a(n) is a deficient number (A005100),
%C a(n+1) = sigma(a(n))-a(n) if a(n) is a primitive abundant number (A071395),
%C a(n+1) = sigma(a(n))-a(n)-m if a(n) is an abundant number with one proper divisor m that is either perfect (A275082) or abundant, and so forth.
%C This is used in the example below.
%C A284326 also generates this sequence under iteration. - _Timothy L. Tiffin_, Feb 22 2022
%H Colin Barker, <a href="/A274339/b274339.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).
%F a(n+3) = a(n).
%F G.f.: 3*x*(5 + 8*x + 6*x^2) / ((1 - x)*(1 + x + x^2)). - _Colin Barker_, Jan 30 2020
%e a(1) = 15;
%e a(2) = sigma(15) = 24;
%e a(3) = sigma(24) - 24 - 12 - 6 = 18;
%e a(4) = sigma(18) - 18 - 6 = 15 = a(1).
%t LinearRecurrence[{0,0,1},{15,24,18},90] (* or *) PadRight[{},90,{15,24,18}] (* _Harvey P. Dale_, Aug 06 2023 *)
%o (PARI) Vec(3*x*(5 + 8*x + 6*x^2) / ((1 - x)*(1 + x + x^2)) + O(x^40)) \\ _Colin Barker_, Jan 30 2020
%Y Cf. A001065, A005100, A005101, A071395, A125310, A187793, A274338, A274340, A274380, A274549, A275082, A284326.
%K nonn,easy
%O 1,1
%A _Timothy L. Tiffin_, Jun 22 2016