login
A273560
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 785", based on the 5-celled von Neumann neighborhood.
1
3, 9, 15, 21, 28, 27, 37, 39, 61, 27, 85, 39, 93, 59, 85, 71, 125, 59, 149, 71, 157, 91, 149, 103, 173, 91, 181, 135, 157, 123, 181, 135, 253, 123, 277, 135, 285, 155, 277, 167, 301, 155, 309, 199, 285, 187, 309, 199, 365, 187, 373, 231, 341, 235, 341, 247
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
First negative term is a(124) = -83. - Georg Fischer, Feb 15 2019
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=785; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A273557.
Sequence in context: A162843 A102954 A272749 * A246388 A272793 A273567
KEYWORD
sign,easy
AUTHOR
Robert Price, May 25 2016
STATUS
approved